profil

Matematyka

(454)
Więcej przedmiotów
Pokaż więcej
Lista
Polecamy | Najnowsze
poleca75%

Zamiana jednostek

Jednostki długości Podstawową jednostką długości jest metr milimetr [mm] = 0,001 m, centymetr [cm] = 0,01 m, decymetr [dm] = 0,1 m, kilometr [km] = 1000 m. 1 mm = 0,1 cm, czyli 1 cm = 10 mm 1 mm = 0,01 dm, czyli 1 dm = 100 mm 1 mm...

poleca81%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca74%

Jednostki masy, długości, powierzchni i objętości

Jednostki masy 1 gram 1 dekagram = 10 g 1 kilogram = 100 dag = 1000 g 1 tona = 1000 kg Jednostki długości 1 mm 1 cm = 10 mm 1 dm = 10 cm 1 m = 100 cm 1 km = 1000 m Jednostki powierzchni 1 mm2 1 cm2 = 100 1 dm2 =100...

poleca75%

Pola figur z przykładami

Wzór na pole prostokąta : a x b Czyli np. bok "a" wynosi 4 cm, a bok "b" 7 cm to stosujemy się do wzoru. Mianowicie: 4 cm x 7 cm = 28 cm kwadratowych. Wzór na pole kwadratu to : P = a 2 Czyli np. bok "a" ma 4 cm. W takim razie: 4...

poleca83%

Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca76%

Własności czworokątów

Własności czworokątów: PROSTOKĄT: -wszystkie kąty proste -przekątne równej długości -przekątne dzielą się na połowy KWADRAT: -wszystkie boki równe -wszystkie kąty proste Przekątne są : -równej długości -prostopadłe -dzielą się na...

poleca84%

Wzory skróconego mnożenia

Kwadrat sumy (a+b)2 = a2 + 2ab + b2 Kwadrat różnicy (a-b)2 = a2 - 2ab + b2 Sześcian sumy (a+b)3 = a3 + 3a2b + 3ab2 + b3 Sześcian różnicy (a-b)3 = a3 - 3a2b + 3ab2 - b3 Różnica kwadratów a2-b2=(a-b) * (a+b) Suma sześcianów...

poleca81%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca82%

Sprawdzian matematyczny nr 1 nauczanie zintegrowane klasa 2

Sprawdzian matematyczny nr 1 nauczanie zintegrowane klasa 2

poleca81%

Wzory

l = 2п r – długość okręgu P = п r2 – pole koła a√2 – przekątna w kwadracie h = (a√3) : 2 – wysokość trójkąta równobocznego P = (a√3) : 4 – pole trójkąta równobocznego r = h : 3 – promień okręgu wpisanego w trójkąt równoboczny R = 2h :...

poleca81%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca83%

Układy równań - metoda wyznaczników

Niżej prezentuje jedną, moim zdaniem najciekawszą, z metod rozwiązywania ukladow równań. Przykladowo schemat ogolny ukladu uwzględniajacy wspolczynniki przy zmiennych. a1X + b1Y = c1 a2X + b2Y = c2 Powstają nam trzy macierze: [ a1...

poleca78%

Twierdzenie Pitagorasa

Trójkąt jest prostokątny to suma kwadratów długości przyprostokątnych jest równa długości przeciwprostokątnych podniesionych do kwadratu. Twierdzenie Pitagorasa Wzór twierdzenia c²= a² + b² Wyrażenia a2, b2 oraz c2 kojarzą nam się...

poleca84%

Ściąga z pól figur płaskich.

Pole kwadratu: a2 Ob. 4a Pole trójkąta dowolnego(a,b,c): a•h Ob. a+b+c Pole równobocznego(a,b,b): a2√3 /4(w ułamku) Ob.: 2b+a Obwód trójkąta równobocznego (a,a,a) = 3a Pole prostopadł.: a•h Ob. 2a+2b Pole rombu: a•h lub •d1•d2 Ob= 4a...

poleca84%

Bryły obrotowe

Bryły obrotowe są to bryły otrzymane w wyniku obrotu figur płaskich. 1. STOŻEK Pp=pi*R(R do kwadratu) gdzie: Pp-pole podstawy R-promień podstawy Pb=pi*R*l Pb-pole boczne R-promień podstawy l-długość tworzącej Pc=Pp+Pb...

poleca83%

Jak liczono kiedyś?

Liczenie jest dziś powszechną, codzienną czynnością. Ludzie liczą we wszystkich zawodach. Gdyby się przyjrzeć zawodom ludzi stwierdzamy, że używane w różnych zawodach liczby występują w różnych postaciach i służą do różnych celów. Również sposoby...

poleca84%

Funkcje

FUNKCJE Definicja funkcji Funkcją nazywamy takie przekształcenie zbioru argumentów X w zbiór wartości Y, które każdemu elementowi ze zbioru X przyporządkowuje dokładnie jeden element zbioru Y. Zapisujemy to w następujący sposób: y=f(x)...

poleca84%

Niedziesiątkowe systemy i liczenia i działania w tych systemach.

Niektórzy twierdza, że odkąd wynaleziono pieniądze i koło, ludzie zaczęli kręcić interesy. Każdy biznesmen tamtych czasów musiał umieć liczyć Np. upolowane mamuty, tygrysy szablozębne itp. mniejsze bądź większe rzeczy. Każdą liczbę trzeba było w...

poleca84%

Wektory w matematyce Referat

Wektor Rachunek wektorowy jest to dział matematyki, część geometrii analitycznej, rozwijany w XIX w. głównie przez W.R. Hamiltona, irlandzkiego matematyka badający własności działań na wektorach. Wektor to uporządkowana para punktów A, B,...

poleca83%

Tales z Miletu i jego wkład w rozwój matematyki

Tales z Miletu (ok.620- ok.540 p.n.e.) Grecki filozof i matematyk, prawdopodobnie pierwszy uczony i filozof europejski. Jeden z twórców jońskiej filozofii przyrody. Urodził się w Milecie (miasto greckie na...

poleca77%

Jednostki - pola, masy, objętości, pojemności

Jednostki długości 1 km = 1000 m 1 cm = 0,001km 1 m = 100 cm 1 cm = 0,01m 1 m = 10 dm 1 dm = 0,1 m 1dm = 10 cm 1 cm = 0,1 dm 1cm = 10 mm 1 mm = 0,1cm Jednostki masy 1 kg = 1000 g 1 g = 0,001 kg 1 kg = 100 dag 1 dag =...

poleca84%

Wzory: Funkcje sumy, różnic i wielokrotności kąta.

Funkcje sumy kątów: Sin (x + y) = sinx*cosy + cosx*siny Cos (x + y) = cosx*cosy – sinx*siny Tg (x + y) = tgx + tgy/ 1 – tgx*tgy , jeżeli cosx ¹ 0, cosy ¹ 0, cos (x + y) ¹ 0 Ctg (x + y) = ctgx*ctgy – 1/ ctgx + ctgy, jeżeli sinx ¹ 0, siny ¹ 0,...

poleca83%

Liczby wymierne - dzielenie

ILORAZ DWÓCH LICZ O RÓŻNYCH ZNAKACH JEST LICZBĄ UJEMNĄ A ILORAZ DWÓCH LICZ O TAKICH SAMYCH ZNAKACH JEST LICZBĄ DODATNIĄ. Przykład -54:9=-6 JEŚLI MAMY NIEPARZYSTĄ LICZBĘ LICZB UJEMNYCH WTEDY WYNIK BĘDZIE UJEMNY, GDY MAMY PARZYSTĄ LICZBĘ...

poleca83%

Rodzaje kątów

Dwie półproste o wspólnym początku dzielą płaszczyznę na dwie części.Każda z tych części wraz z półprostymi to figura geometryczna, którą nazywamy kątem. Półproste tworzące kąt nazywamy ramionami kąta ,a ich w spólny punkt-wierzchołkiem kąta....

poleca83%

Przekroje graniastosłupów i ostrosłupów

praca w załączniku w formacie OpenOffice .odt .

poleca83%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca84%

Geometria

Łamana zwyczajna- łamana, której odcinki się nie przecinają Płaszczyzna- pojęcie pierwotne-nie posiada definicji; jest zbiorem nieskończenie wielu punktów (karta) Wielokąt-część płaszczyzny ograniczona łamana zwyczajną zamknięta wraz z ta...

poleca84%

Okrąg

Okrąg – zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu o zadaną odległość. Słowo „okrąg” jest często mylone ze słowem „okręg” oznaczającym obszar administracyjny. Definicja Niech S = (x0,y0) będzie...

poleca84%

Bryły platońskie

Praca znajduje się w załączniku. Jest to prosta prezentacja wykonana w MS PowerPoint - 10 slajdów.

poleca83%

Przeliczanie

DROGI PRACOWNIKU !!! Słyszałem, że chciałbyś podwyżkę! Czy Ty nie masz honoru? Czy nie wiesz jak mało pracujesz? Policzmy: Rok majak wiadomo 365 dni. A Ty codziennie śpisz 8 godzin - to są 122 dni w roku. Pozostaje zatem 243 dni, poza tym...

poleca83%

Własności funkcji liniowej

Jest to prezentacja multimedialna Mspp2003 mojego autorstwa spakowana w archiwum winrara. Osobiście robiłem ją na 4 z matmy także jest okej. Pozdrawiam

poleca83%

Funkcje trygonometryczne dużo!!! wzorów na sumy, różnice, wielokrotności, połówki i inne (mat-fiz)

Całość jest zapisana w załączniku. Robione w Excelu. Mam nadzieje że sie przydadzą. Zamiast alfa i beta jest X i Y.

poleca83%

Pitagoras

Pitagoras, Pitagoras z Samos, Pythagoras, urodził się około 580 p.n.e., zmarł około 496 p.n.e., grecki matematyk i filozof; przyczynił się znacznie do rozwoju matematyki i astronomii, był twórcą kierunku filozoficznego zwanego pitagoreizmem....

poleca83%

Zadanie z trapezem

W trapezie podstawy mają długość 8 cm i 4 cm. Poprowadzono odcinek do nich równoległy, który dzieli pole trapezu na połowę. Oblicz długość tego odcinka.

poleca83%

Pitagoras

Pitagoras (ok. 572-497 p.n.e.) grecki matematyk. Pochodził z wyspy Samos, czyli wschodniej kolonii japońskiej. Mając 40 lat, opuścił Jonię, która walczyła z Persami i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi...

poleca83%

Pitagoras

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca83%

Wykorzystanie równań do zadań z treścią.

Janek dodał 3 liczby.Druga z tych liczb była cztery razy większa od pierwszej z nich, a trzecia była o 8 mniejsza od pierwszej.Otrzymał 28.Jakie to były liczby? I liczba-x II liczba-2 razy x III liczba - x razy 4 - 8 x+x razy...

poleca83%

Trójkąt Pascala

W załącznik mamy wykonany trójkąt Pascala.

poleca82%

Liczba PI

Liczba π Liczba π jest liczbą niewymierną, określającą stosunek długości okręgu do długości jego średnicy. π=3,141592... Symbol π został pierwszy raz użyty w 1706 roku przez matematyka angielskiego Wiliama Jonesa. W powszechne użycie wszedł...

poleca84%

matematyka

HISTORIA MATEMATYKI - WIEK XIX Charakterystyka epoki: • Rewolucja francuska i okres napoleoński stworzyły korzystne warunki dla rewolucji przemysłowej w Europie, co wzmogło uprawianie nauk fizycznych, a tym samym prawie idealne...

poleca82%

Ułamki.

Mrożenie ułamków: Mnożąc liczbę naturalną przez ułamek przez liczbę naturalną, mnożymy tę liczbę przez licznik ułamka a mianownik pozostaje bez zmian. Mnożąc liczbę mieszaną przez liczbę mieszaną przez liczbę naturalną, można przed wykonaniem...

poleca81%

Bryły obrotowe

Bryła obrotowa - są to bryły powstałe w wyniku obrotu brył płaskich wokół własnej osi * Najważniejsze bryły obrotowe Walec - bryła powstała w wyniku obrotu prostokąta wokół jednej z krawędzi....

poleca84%

Ciąg Fibonacciego

1. Ciąg liczbowy Fibonacciego Ciąg Fibonacciego to ciąg liczb naturalnych zwanych liczbami Fibonacciego określony rekurencyjnie w sposób następujący: F0 = 0 F1= 1 Fn = Fn-1+Fn-2, dla n ≥ 2 Początkowe wartości tego ciągu to: 0, 1, 1,...

poleca83%

Wykres równowagi układu żelazo

Wykres równowagi układu żelazo-węgiel, to wykres , który odzwierciedla równowagę fazową w stopach żelaza z węglem. Jest przedstawiany w dwóch wersjach : jako stabilny żelazo-grafit i metastabilny żelazo-cementyt Fe3 C. Pierwszy jest stosowany do...

poleca84%

Funkcja trygonometryczna sinus

Definicja: Stosunek długości przyprostokątnej w trójkącie prostokątnym, leżącej naprzeciw kata α do długości przeciwprostokątnej w tym trójkącie. Kat α, to kąt do którego odnosi się funkcja sin. Przeciwprostokątna jest zawsze najdłuższa w...

poleca83%

Zagadki matematyczne

1. Pewien młynarz pobierał jako wynagrodzenie dziesiątą część mąki, którą zmełł dla klienta Ile zmełł dla klienta, który po wynagrodzeniu młynarza miał jeden cetnar mąki? 2. Pewien chłopiec miał tyle samo braci i sióstr. Jego siostra Ala...

poleca82%

Pitagoras

Urodził się około roku 570 p. n. e. na wyspie Samos (wschodnie kolonie greckie). Po opuszczeniu rodzinnych stron podróżował, aż wreszcie osiadł w mieście Kroton (Italia), gdzie założył swoją słynną szkołę. Do tego czasu zetknął się z naukami...

poleca83%

Zbiory

Zbiór pusty Ć jest to zbiór do którego nie należy żaden element Zbiór skończony gdy istnieje taka liczba naturalna n, że zbiór ma n elementów. Zbiór nieskończony jest to zbiór, który nie jest skończyny (???? :-) Działanie na zbiorach: Suma...

poleca83%

Zadanie o trójkącie prostokątnym wykorzystujące twierdzenie o dwusiecznej

Oblicz stosunek pola koła opisanego na trójkącie prostokątnym do pola koła wpisanego w tym trójkącie, wiedząc, że dwusieczna kąta prostego dzieli przeciwprostokątną w stosunku 3:4.

poleca82%

Złote myśli związane z matematyką

"Między duchem a materią pośredniczy matematyka" HUGO STEINHAUS -------------------------------------------------------------------------------- "Oprócz matematyki nie istnieje żadna niezawodna wiedza z wyjątkiem tej, która wywodzi się z...