profil

Matematyka

(454)
Więcej przedmiotów
Pokaż więcej
Lista
Polecamy | Najnowsze
poleca75%

Zamiana jednostek

Jednostki długości Podstawową jednostką długości jest metr milimetr [mm] = 0,001 m, centymetr [cm] = 0,01 m, decymetr [dm] = 0,1 m, kilometr [km] = 1000 m. 1 mm = 0,1 cm, czyli 1 cm = 10 mm 1 mm = 0,01 dm, czyli 1 dm = 100 mm 1 mm...

poleca81%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca74%

Jednostki masy, długości, powierzchni i objętości

Jednostki masy 1 gram 1 dekagram = 10 g 1 kilogram = 100 dag = 1000 g 1 tona = 1000 kg Jednostki długości 1 mm 1 cm = 10 mm 1 dm = 10 cm 1 m = 100 cm 1 km = 1000 m Jednostki powierzchni 1 mm2 1 cm2 = 100 1 dm2 =100...

poleca83%

Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca75%

Pola figur z przykładami

Wzór na pole prostokąta : a x b Czyli np. bok "a" wynosi 4 cm, a bok "b" 7 cm to stosujemy się do wzoru. Mianowicie: 4 cm x 7 cm = 28 cm kwadratowych. Wzór na pole kwadratu to : P = a 2 Czyli np. bok "a" ma 4 cm. W takim razie: 4...

poleca84%

Wzory skróconego mnożenia

Kwadrat sumy (a+b)2 = a2 + 2ab + b2 Kwadrat różnicy (a-b)2 = a2 - 2ab + b2 Sześcian sumy (a+b)3 = a3 + 3a2b + 3ab2 + b3 Sześcian różnicy (a-b)3 = a3 - 3a2b + 3ab2 - b3 Różnica kwadratów a2-b2=(a-b) * (a+b) Suma sześcianów...

poleca77%

Własności czworokątów

Własności czworokątów: PROSTOKĄT: -wszystkie kąty proste -przekątne równej długości -przekątne dzielą się na połowy KWADRAT: -wszystkie boki równe -wszystkie kąty proste Przekątne są : -równej długości -prostopadłe -dzielą się na...

poleca78%

Jednostki - pola, masy, objętości, pojemności

Jednostki długości 1 km = 1000 m 1 cm = 0,001km 1 m = 100 cm 1 cm = 0,01m 1 m = 10 dm 1 dm = 0,1 m 1dm = 10 cm 1 cm = 0,1 dm 1cm = 10 mm 1 mm = 0,1cm Jednostki masy 1 kg = 1000 g 1 g = 0,001 kg 1 kg = 100 dag 1 dag =...

poleca82%

Układy równań - metoda wyznaczników

Niżej prezentuje jedną, moim zdaniem najciekawszą, z metod rozwiązywania ukladow równań. Przykladowo schemat ogolny ukladu uwzględniajacy wspolczynniki przy zmiennych. a1X + b1Y = c1 a2X + b2Y = c2 Powstają nam trzy macierze: [ a1...

poleca82%

Bryły obrotowe

Bryła obrotowa - są to bryły powstałe w wyniku obrotu brył płaskich wokół własnej osi * Najważniejsze bryły obrotowe Walec - bryła powstała w wyniku obrotu prostokąta wokół jednej z krawędzi....

poleca84%

Bryły Platońskie

Biografia Platona: Platon (ok. 437 - 347 p.n.e.), filozof grecki, swoje zamiłowania do filozofii zawdzięcza Sokratesowi. Po śmierci Sokratesa odbył liczne podróże podczas których poznał wiele poglądów w tym doktryny orfickie i pitagorejskie o...

poleca83%

Podział trójkątów, czworokąty, okręgi i koła.

1. Podział trójkątów ze względu na długość boków: a) trójkąt różnoboczny: - każdy bok ma inną długość, - każdy kąt ma inną miarę. b) trójkąt równoramienny: - ramiona są równej długości, - kąty przy podstawie są równej miary. c)...

poleca83%

Sprawdzian matematyczny nr 1 nauczanie zintegrowane klasa 2

Sprawdzian matematyczny nr 1 nauczanie zintegrowane klasa 2

poleca84%
poleca84%

Funkcje Trygonometryczne

1.Wyznacz sin i cos kąta którego ramię wodzące przechodzi przez punkt P=(8,-6) 2.Zbuduj kąt alfa wiedząc że cos alfa = - 3/7 3.Oblicz sin alfa wiedząc że cos alfa=2/5 i 270 stopni

poleca84%

Zbiór wzorów i definicji

1 ARYTMETYKA I ALGEBRA *Zbiory liczbowe N-zbiór liczb naturalnych np.0,1,2,3,4,5,6,7,8,9,... C-zbiór liczb całkowitych np...-3,-2,-1,0,1,2,3......

poleca84%

Wzory Matematyczne

Pole kuli 4πr2 rozpocznij naukę Objętość kuli 4/3πr2 Pole poczne stożka πrl Pole podstawy stożka πr2 Pole stożka Pp+Pb V stożka 1/3πr2*H Pole walca 2Pp+Pb Pole podstawy walca 2* πr2 Pole boczne walca 2πr*h V walca Pp*H Pole...

poleca83%

Cechy podzielności.

Przez 2 i 5 Przez 2 (lub przez 5) są podzielne te i tylko te liczby, których cyfra jedności, wzięta jako liczba jest podzielna przez 2 (lub odpowiednio przez 5), lub które są zakończone zerem. Przez 4 i 25 Przez 4 (lub przez 25) są podzielne te...

poleca84%

Zadania tekstowe - algebra

Przedstawię tutaj w jaki sposób można łatwo obliczyć zadanie tekstowe z algebry. Zadanie: Ania miała 6 metrowy kij. Chciała użyć go do aportowania dla psa, ale był za długi, więc przecięła go na 2 części. Jedna z nich jest 2 razy dłuższa od...

poleca83%

Nazywanie i zapisywanie wyrażeń algebraicznych

Łącząc wyrażenia algebraiczne znakami działań, tworzymy nowe, bardziej złożone wyrażenia. Wyrażenia algebraiczne mają także swoje nazwy. Są one takie same jak nazwa wyrażenia arytmetycznego, które powstanie z wyrażenia algebraicznego po...

poleca84%

Pierwiaski Kwadratowe przykład

Zad. 2. Napisz program, który wyznaczy pierwiastki równania kwadratowego. W przypadku, gdy tych pierwiastków nie ma program powinien wyświetlić komunikat: "Brak pierwiastków". Rozwiązanie Rozpatrujemy następujące równanie:...

poleca84%

Statystyka opisowa

Zastosowanie statystyki opisowej w zadaniach - poziom podstawowy - technikum.

poleca84%

Pitagoras z Samos

PITAGORAS Z SAMOS (570-496 p.n.e.) PITAGORAS Z SAMOS (572- 496 p.n.e.)- grecki matematyk i filozof, przyczynił się znacznie do rozwoju matematyki i astronomii. Był twórcą kierunku filozoficznego zwanego pitagoreizmem. Nie pozostawił po sobie...

poleca83%

Pomiar czasu na przestrzeni dziejów

Historia początków pomiaru czasu jest bardzo odległa i wiąże się ściśle z rozwojem badań astronomicznych. Rachuba czasu odegrała również ważną rolę w kartografii, a także miała i ma znaczenie w życiu codziennym. Powiązanie jej z astronomią wynika...

poleca83%

&Pi - historia

Notatka ucznia: Najważniejsze daty w historii &pi: 2000 p.n.e. - Babilończycy przyjmują przybliżoną wartość &pi równą 3. 250 p.n.e. - Archimedes określa z dobrą dokładnością przybliżoną wartość &pi jako 22/7. 1706 - Wiliam Jones...

poleca84%

Kąty i trójkąty - prezentacja

W prezentacji znajdziecie wszystkie niezbędne informacje na temat kątów i trójkątów. Prezentacja zawiera 73 slajdy w tym 10 zadań z rozwiązaniem.

poleca84%

Diofantos - pierwszy matematyk...

Diofantos - z Aleksandrii, III wiek n.e. Był pierwszy matematyk, któy zajął się algebrą. Niewiele wiemy o jego życiu. Pewne szczegóły możemy poznać rozwiązując zadanie z Epifatium Diofanta zamieszczonego w antologii z XIV wieku mnicha Maksymusa...

poleca83%

Liczba "pi"

LICZBA pi Jest to chyba najbardziej znana liczba niewymierna i jednocześnie najstarsza ze znanych nam cyfr tego typu (liczy sobie ok 4000 lat - w Egipcie znaleziono zapiski na jej temat dotowane na ten właśnie okres czasu). jest to nic innego jak...

poleca84%

Różne tematy z Matematyki

Patrz załączniki: - Trójkąt równoboczny i inne - Wektory - Granice funkcji - Wzory Wiete

poleca83%

Funkcje

Przy określaniu jakiegokolwiek przyporządkowania funkcję dzielimy na dwa zbiory -dziedzinę -przeciwdziedzinę Elementy dziedziny to argumenty a przeciwdziedzinyto wartości. Przy zadaniach z funkcji zawsze dane są dwa zbiory X i Y. Funkcja jest to...

poleca83%

Funkcje

Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy takie przyporządkowanie,w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y. Zdanie "Funkcja f argumentom ze zbioru X przyporządkowuje wartości ze...

poleca84%

Asymptoty ukośne

Asymptoty ukośne istnieją wtedy i tylko wtedy gdy nie istnieje asymptota pozioma, stad wniosek ze jesli istnieje asymptota pozioma to nie istnieje asymptota ukośna w danym otoczeniu. Schemat badania asymptoty ukośnej: liczymy granice w + i -...

poleca83%

Proste konstrukcje - opis

Konstrukcja to sporządzenie rysunku konkretnej figury albo wykonanie operacji geometrycznej z użyciem jedynie cyrkla i linijki bez podziałki. Konstrukcja 1 - Symetralna odcinka AB 1.Wbijamy nóżkę cyrkla w punkt A i dowolnym promieniem (musi...

poleca84%

Walec, ostroslup, graniastoslup, funkcje, miejsce zerowe (mat. na spr)

1. Pole powierzchni walca Pc=2Pp+Pb Pc=2πr²+2πrH 2. Objętość walca V=Pp•H V=πr²•H 3. Objętość ostrosłupa V=⅓Pp•H Pc=Pp+Pb 4. Objętość i pole graniastosłupa V=Pp•H Pc=Pp+Pb 5. Bryłami obrotowymi nazywamy bryły, powstałe w wyniku...

poleca83%

Twierdzenie Pitagorasa

Twierdzenie Pitagorasa. Jeżeli trójkąt jest prostokątny, to kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych. Założenie: ABC jest prostokątny. Teza: c2 = a2 + b2. Odwrotne twierdzenie Pitagorasa. Jeżeli...

poleca84%

Jeszcze jeden "dziwny" dowód

Cześć!! Chciałem Wam jeszcze raz przedstawić dość ciekawy dowód z matematyki. Myślę, że po moich wyjaśnieniach dotyczących dowodu równości "7=3" rozpracowanie tego problemu nie sprawi Wam wielkich trudności. A więc zaczynamy: - weźmy pod uwagę...

poleca82%

Wyrażenia algebraiczne

Wyrażenie algebraiczne to wyrażenie składające się liter oraz liczb, które są połączone ze sobą znakami działań oraz nawiasami. Za pomocą wyrażeń algebraicznych zapisujemy różne zwroty matematyczne, wzory, twierdzenia oraz równania i nierówności....

poleca84%

Walec, stożek, kula

Matematyka Walec jest to bryła ograniczona powierzchnią cylindryczną o kierującej zamkniętej oraz dwiema płaszczyznami równoległymi stanowiącymi podstawy walca. Za kierującą powierzchni walcowej można przyjąć kontur którejkolwiek z podstaw...

poleca81%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca83%
poleca84%

Statystyka

Struktury jednowymiarowe. Statyst.met.analizy i ich rozkłądy Dwa typy porównań: 1) dwóch lub wiecej różnych zbiorowości pod wzgl tej samej cechy, 2)rozkładu 2-lub wiecej cech w tej samej zbiorowo. Cechy mierzalne analizujemy przy...

poleca83%

Wzory (najbardziej przydatne)

Obwód trójkąta - L=a+b+c jest sumą długości jego boków Pole trójkąta - P =a*ha przez 2 Pole trójkąta prostokątnego P=½ a*b Obwód prostokąta o bokach a i b - L=2a+2b Pole prostokąta - P=a*b Obwód kwadratu o boku a wyraża się wzorem - L=4*a...

poleca83%

Egzaminy kompetencji z matematyki

Matematyka Zestaw egzaminacyjny I Życzę powodzenia! -------------------------------------------------------------------------------- 1. Oblicz 132% różnicy liczb: 115,4 i -84,6. a) 15 b) 1297 c) 264 d) -3 2. Doprowadź wyrażenie...

poleca81%

Wzory

l = 2п r – długość okręgu P = п r2 – pole koła a√2 – przekątna w kwadracie h = (a√3) : 2 – wysokość trójkąta równobocznego P = (a√3) : 4 – pole trójkąta równobocznego r = h : 3 – promień okręgu wpisanego w trójkąt równoboczny R = 2h :...

poleca83%

Konstrukcja pięciokąta foremnego

Konstrukcja pięciokąta foremnego.

poleca83%

Figury Przystające

Łamana zwyczajna- łamana, której odcinki się nie przecinają Płaszczyzna- pojęcie pierwotne-nie posiada definicji; jest zbiorem nieskończenie wielu punktów (karta) Wielokąt-część płaszczyzny ograniczona łamana zwyczajną zamknięta wraz z ta łamaną...

poleca84%

Przekroje graniastosłupów i ostrosłupów

praca w załączniku w formacie OpenOffice .odt .

poleca83%

Funkcje cyklometryczne

1. y=arcsinx wtedy i tylko wtedy gdy x=siny Dziedziną jest zbiór 2. y=arccosx wtedy i tylko wtedy gdy x=cosy Dziedziną jest zbiór 3. y=arctgx wtedy i tylko wtedy gdy x=tgy Dziedziną jest zbiór liczb rzeczywistych 4. y=arcctgx wtedy i...

poleca83%

Funkcja trygonometryczna-wzory

sin(α+β)= sinαcosβ+cos sinβ sin(α-β)= sinαcosβ-cosαsinβ sin2α=2sinα cosα sinα+sinβ=2sin(α+β)/2 cos(α-β)/2 sinα-sinβ=2cos(α+β)/2 sin(α-β)/2 |sin α/2|=√(1-cosα)/2 sin3α=3sin2α-4nin3α sin(-α)=sin(180o-α) sinα=2sinα/2 cosα/2...