profil

Matematyka

(454)
Więcej przedmiotów
Pokaż więcej
Lista
Polecamy | Najnowsze
poleca82%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca75%

Zamiana jednostek

Jednostki długości Podstawową jednostką długości jest metr milimetr [mm] = 0,001 m, centymetr [cm] = 0,01 m, decymetr [dm] = 0,1 m, kilometr [km] = 1000 m. 1 mm = 0,1 cm, czyli 1 cm = 10 mm 1 mm = 0,01 dm, czyli 1 dm = 100 mm 1 mm...

poleca74%

Jednostki masy, długości, powierzchni i objętości

Jednostki masy 1 gram 1 dekagram = 10 g 1 kilogram = 100 dag = 1000 g 1 tona = 1000 kg Jednostki długości 1 mm 1 cm = 10 mm 1 dm = 10 cm 1 m = 100 cm 1 km = 1000 m Jednostki powierzchni 1 mm2 1 cm2 = 100 1 dm2 =100...

poleca84%

Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca78%

Własności czworokątów

PROSTOKĄT - wszystkie kąty proste - przekątne równej długości - przekątne dzielą się na połowy KWADRAT - wszystkie boki równe - wszystkie kąty proste Przekątne są: - równej długości - prostopadłe - dzielą się na polowy - osiami...

poleca76%

Pola figur z przykładami

Wzór na pole prostokąta : a x b Czyli np. bok "a" wynosi 4 cm, a bok "b" 7 cm to stosujemy się do wzoru. Mianowicie: 4 cm x 7 cm = 28 cm kwadratowych. Wzór na pole kwadratu to : P = a 2 Czyli np. bok "a" ma 4 cm. W takim razie: 4...

poleca81%

Twierdzenie Pitagorasa

Trójkąt jest prostokątny to suma kwadratów długości przyprostokątnych jest równa długości przeciwprostokątnych podniesionych do kwadratu. Twierdzenie Pitagorasa Wzór twierdzenia c²= a² + b² Wyrażenia a2, b2 oraz c2 kojarzą nam się...

poleca84%

Sprawdzian matematyczny nr 1 nauczanie zintegrowane klasa 2

Sprawdzian matematyczny nr 1 nauczanie zintegrowane klasa 2

poleca84%

Jak liczono kiedyś?

Liczenie jest dziś powszechną, codzienną czynnością. Ludzie liczą we wszystkich zawodach. Gdyby się przyjrzeć zawodom ludzi stwierdzamy, że używane w różnych zawodach liczby występują w różnych postaciach i służą do różnych celów. Również sposoby...

poleca84%

Liczba PI

Liczba π Liczba π jest liczbą niewymierną, określającą stosunek długości okręgu do długości jego średnicy. π=3,141592... Symbol π został pierwszy raz użyty w 1706 roku przez matematyka angielskiego Wiliama Jonesa. W powszechne użycie...

poleca84%

Graniastosłup, ostrosłup i walec

Ostrosłup Ostrosłup – bryła geometryczna w postaci wielościanu, którego wszystkie ściany prócz podstawy zbiegają się w jednym punkcie zwanym wierzchołkiem (czyli są trójkątami o wspólnym wierzchołku). Wysokość ostrosłupa to odległość od...

poleca82%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca84%

Liczby wymierne - dzielenie

ILORAZ DWÓCH LICZ O RÓŻNYCH ZNAKACH JEST LICZBĄ UJEMNĄ A ILORAZ DWÓCH LICZ O TAKICH SAMYCH ZNAKACH JEST LICZBĄ DODATNIĄ. Przykład -54:9=-6 JEŚLI MAMY NIEPARZYSTĄ LICZBĘ LICZB UJEMNYCH WTEDY WYNIK BĘDZIE UJEMNY, GDY MAMY PARZYSTĄ LICZBĘ...

poleca84%

Pitagoras

Pitagoras (ok. 572-497 p.n.e.) grecki matematyk. Pochodził z wyspy Samos, czyli wschodniej kolonii japońskiej. Mając 40 lat, opuścił Jonię, która walczyła z Persami i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi...

poleca84%

Funkcje

FUNKCJE Definicja funkcji Funkcją nazywamy takie przekształcenie zbioru argumentów X w zbiór wartości Y, które każdemu elementowi ze zbioru X przyporządkowuje dokładnie jeden element zbioru Y. Zapisujemy to w następujący sposób: y=f(x)...

poleca82%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca83%

Wzory skróconego mnożenia

Kwadrat sumy (a+b)2 = a2 + 2ab + b2 Kwadrat różnicy (a-b)2 = a2 - 2ab + b2 Sześcian sumy (a+b)3 = a3 + 3a2b + 3ab2 + b3 Sześcian różnicy (a-b)3 = a3 - 3a2b + 3ab2 - b3 Różnica kwadratów a2-b2=(a-b) * (a+b) Suma sześcianów...

poleca84%

Złote myśli związane z matematyką

"Między duchem a materią pośredniczy matematyka" HUGO STEINHAUS -------------------------------------------------------------------------------- "Oprócz matematyki nie istnieje żadna niezawodna wiedza z wyjątkiem tej, która wywodzi się z...

poleca84%

Osie symetrii

Symetria osiowa i środkowa !!!! Spis treści: 1. Wstęp 2. Symetria środkowa 3. Symetria osiowa 1. Wstęp: Symetria, własność obiektu ze względu na różnego rodzaju przekształcenia (np. przekształcenia geometryczne). Najprostszymi...

poleca84%

Symetria osiowa.

SYMETRIA OSIOWA Symetrią osiową względem prostej a nazywamy przekształcenie płaszczyzny na płaszczyznę, w którym każdemu punktowi P przyporządkowany jest punkt P' leżący na prostej prostopadłej przechodzącej przez O w tej samej odległości od O...

poleca84%

Niedziesiątkowe systemy i liczenia i działania w tych systemach.

Niektórzy twierdza, że odkąd wynaleziono pieniądze i koło, ludzie zaczęli kręcić interesy. Każdy biznesmen tamtych czasów musiał umieć liczyć Np. upolowane mamuty, tygrysy szablozębne itp. mniejsze bądź większe rzeczy. Każdą liczbę trzeba było w...

poleca84%

Wykorzystanie równań do zadań z treścią.

Janek dodał 3 liczby.Druga z tych liczb była cztery razy większa od pierwszej z nich, a trzecia była o 8 mniejsza od pierwszej.Otrzymał 28.Jakie to były liczby? I liczba-x II liczba-2 razy x III liczba - x razy 4 - 8 x+x razy...

poleca84%

Układy równań - metoda wyznaczników

Niżej prezentuje jedną, moim zdaniem najciekawszą, z metod rozwiązywania ukladow równań. Przykladowo schemat ogolny ukladu uwzględniajacy wspolczynniki przy zmiennych. a1X + b1Y = c1 a2X + b2Y = c2 Powstają nam trzy macierze: [ a1...

poleca84%

Figury płaskie i przestrzenne - pola,objętości, obwody

FIGURY PŁASKIE: -kwadrat -trójkąt -równoległobok -trapez -deltoid -koło FIGURY PRZESTRZENNE: -prostopadłościan -ostrosłup -walec -stożek -kula -sześcian foremny WSZYSTKO TO ZNAJDUJE SIĘ POD SPODEM W ZAŁĄCZNIKU

poleca84%

Hiperbola

Hiperbola, krzywa płaska (dwuwymiarowa), będąca złączeniem dwóch krzywych zwanych gałęziami hiperboli, równoważnie hiperbola może być zdefiniowana jako miejsce geometryczne punktów, dla których stosunek długości ogniskowej (odległość ognisk od...

poleca84%

Wzory na matematyke

Wzory Skróconego mnożenia (a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 a2 - b2 = (a - b)(a + b) Pole i obwód koła Pole koła Po = π R2 Obwód okręgu (koła) L = 2 π R R - promień okręgu Pole trójkąta P∆ = ½...

poleca84%

Szereg geometryczny.

Definicja. Jeżeli jest ciągiem geometrycznym, to ciąg określony wzorem: nazywamy szeregiem geometrycznym lub ciągiem sum częściowych ciągu . Definicja: Jeżeli szereg jest zbieżny do skończonej granicy, to tą granicę nazywamy sumą...

poleca83%

Liczby doskonałe

Liczby doskonałe to takie liczby których suma dzielników tworzy tę właśnie liczbę. Do tej pory znaleziono 36 liczb doskonałych podam 4 najmniejsze: 6={1+2+3} 28={1+2+4+7+14} 496={1+2=4+8+16+31+62+124+248}...

poleca80%

Jednostki - pola, masy, objętości, pojemności

Jednostki długości 1 km = 1000 m 1 cm = 0,001km 1 m = 100 cm 1 cm = 0,01m 1 m = 10 dm 1 dm = 0,1 m 1dm = 10 cm 1 cm = 0,1 dm 1cm = 10 mm 1 mm = 0,1cm Jednostki masy 1 kg = 1000 g 1 g = 0,001 kg 1 kg = 100 dag 1 dag =...

poleca84%

Zagadki matematyczne

1. Pewien młynarz pobierał jako wynagrodzenie dziesiątą część mąki, którą zmełł dla klienta Ile zmełł dla klienta, który po wynagrodzeniu młynarza miał jeden cetnar mąki? 2. Pewien chłopiec miał tyle samo braci i sióstr. Jego siostra Ala...

poleca84%

Równania cz. 2

Równania (2) Zapamiętaj : Przy mnożeniu i dzieleniu wyrażeń zachodzą pewne ciekawe zmiany : (+) razy (+) = (+) ; (-) razy (-) = (+) ; (-) razy (+) = (-) ; (+) razy (-) = (-) 5 x 5 = 25 (-3) x (-4) = 12...

poleca84%

Rachunek prawdopodobieństwa - zestawienie wzorów

Własności prawdopodobieństwa 0? P (A) ? 1 dla każdego zdarzenia A ? ? P (?) = 1 ? - zdarzenie pewne P (?) = 0 ? - zdarzenie niemożliwe (pusty zbiór ?) P (A) ? P (B) gdy A ? B ? ? P (A ? B) = P (A) P (B) - P (A ? B), dla dowolnych zdarzeń...

poleca83%

Działania na ułamkach

Zaczniemy od najłatwiejszego działania jakim jest dodawanie. Najpierw przypomnę budowę ułamka zwykłego: 1/2 po lewej stronie(normalnie na górze) jest licznik.Po prawej stronie(normalnie na dole) jest mianownik. ten ułamek czytamy jako jedna...

poleca84%

Liczby i działania - Najważniejsze informacje + zadania

LICZBY NATURALNE : Liczny zapisujemy za pomocą znaków zwanych cyframi . Jest dziesięć cyfr : 0,1,2,3,4,5,6,7,8,9,. Przy pomocy cyfr tworzymy zbiory liczbowe . Najprostszym jest zbiór liczb naturalnych , który oznaczamy literą N . N-{...

poleca84%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca84%

Pitagoras

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca84%

Wyrażenia algebraiczne

Wyrażenia algebraiczne powstają przez połączenie symboli literowych oraz liczb znakami działań i nawiasów, np. 4x 2y-3 3a 2b-c 8m-9 2(a b) (x y) Każde wyrażenie możemy zapisać w różny sposób, wykonując działania na literach, podobnie jak na...

poleca83%

Bryły obrotowe

Bryła obrotowa - są to bryły powstałe w wyniku obrotu brył płaskich wokół własnej osi * Najważniejsze bryły obrotowe Walec - bryła powstała w wyniku obrotu prostokąta wokół jednej z krawędzi....

poleca84%

Podział trójkątów, czworokąty, okręgi i koła.

1. Podział trójkątów ze względu na długość boków: a) trójkąt różnoboczny: - każdy bok ma inną długość, - każdy kąt ma inną miarę. b) trójkąt równoramienny: - ramiona są równej długości, - kąty przy podstawie są równej miary. c)...

poleca84%

Wyrażenia algebraiczne - definicja

Wyrażenie algebraiczne to wyrażenie składające się liter oraz liczb, które są połączone ze sobą znakami działań oraz nawiasami. Za pomocą wyrażeń algebraicznych zapisujemy różne zwroty matematyczne, wzory, twierdzenia oraz równania i nierówności....

poleca84%

Moje hobby: coś o liczbach pierwszych

Nie jest to typowo matematyczna praca, ale po pewnych przeróbkach może uchodzić za krótki referat o sposobach poszukiwania liczb pierwszych.

poleca82%

Pola i obwodu figur płaskich

PROSTOKĄT P= ab ( pośrodku jest mnożenie) Ob= 2a+2b TRAPEZ P= 1/2(a+b)h Ob= wszystkie boki dodać KWADRAT P= aa Ob= 4a RÓWNOLEGŁOBOK P= ah Ob= 2a+2b ROMB P= ah ( z przekątnymi jest P= 1/2 * d1 * d2 ) Ob= 4a DELTOID P=...

poleca83%

Zadanie o trójkącie prostokątnym wykorzystujące twierdzenie o dwusiecznej

Oblicz stosunek pola koła opisanego na trójkącie prostokątnym do pola koła wpisanego w tym trójkącie, wiedząc, że dwusieczna kąta prostego dzieli przeciwprostokątną w stosunku 3:4.

poleca84%

matematyka-czy jest potrzebna ?czy nie?

Matematyka-a cusz to za przedmiot? matematyka jest piękna i niwezwykle pożyteczna,w jej symbola twierdzeniach i zasadach kryje sie wiedza o swiecie i żadzących w nim prawach(ojejku troche pomyliłam)ale wiecie co tak naprawde mam jom w...

poleca83%

Permutacje

Permutacją z powtórzeniami zbioru k elementowego nazywamy ciąg, w którym pewne elementy powtarzają się n1, n2, ..., nk razy. Liczba n elementowych permutacji wyraża się wzorem

poleca83%

Liczby Pierwsze

Liczby pierwsze są to takie liczby naturalne, które większe są od jedynki i podzielne bez reszty przez samą siebie i jedynkę. Jednym z pytań dotyczących liczb pierwszych, które narzuca się każdemu jest pytanie o liczbę tych liczb: ile ich jest,...

poleca83%

Równoległoboki i romby

Czworokąt, który ma dwie pary boków równoległych, to równoległobok. Równoległobok, który ma boki jednakowej długości nazywamy rombem. Przekątne równoległoboku przecinają się w połowie. Przekątne rombu przecinają się w połowie i są prostopadłe....

poleca83%

Liczby itp.

UŁAMEK NIEWŁAŚCIWY to ułamek, w którym licznik jest większy od mianownika: Przykład: LICZBA MIESZANA składa się z liczby całkowitej i ułamka zwykłego: Przykład: ZAMIANA LICZBY MIESZANEJ NA UŁAMEK NIEWŁAŚCIWY: Żeby zamienić liczbę mieszaną na...

poleca84%

Dowody graficzne twierdzenia Pitagorasa

Przedstawiam tutaj trzy graficzne dowody znanego twierdzenia Pitagorasa przygotowane przeze mnie w programie Paint. Mam nadzieję, że znajdzie się ktoś, komu materiały te okażą się pomocne. Powodzenia...

poleca84%

Logika,Zbiory,Potęgi

Wszystko co najażniejsze z logiki, zbiorów i potęg

Ciekawostki ze świata