profil

Matematyka

(295)
Dodaj zadanie

Masz problem z pracą domową?
Pomożemy rozwiązać Twoje zadania

4 online
poleca81%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca82%

Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca84%

Wzory skróconego mnożenia.

Wzory skróconego mnożenia (a+b)2 = a2 + 2ab + b2 - kwadrat sumy (a-b)2 = a2 - 2ab + b2 - kwadrat różnicy (a+b)3 = a3 + 3a2b + 3ab2 + b3 - sześcian sumy (a-b)3 = a3 - 3a2b + 3ab2 -...

poleca83%

Układy równań - metoda wyznaczników

Niżej prezentuje jedną, moim zdaniem najciekawszą, z metod rozwiązywania ukladow równań. Przykladowo schemat ogolny ukladu uwzględniajacy wspolczynniki przy zmiennych. a1X + b1Y = c1 a2X + b2Y = c2 Powstają nam trzy macierze: [ a1...

poleca81%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca83%

Kąty i trójkąty - prezentacja

W tej oto prezentacji znajdziecie wszystkie niezbędne informacje na temat kątów i trójkątów. Prezentacja zawiera 73 slajdy w tym 10 zadań z rozwiązaniem :) Pozdrawiam serdecznie ;D

poleca85%

Próby złota i srebra

Zadanie 1 Ile gramów czystego złota znajduje się w 50g czystego stopu, jeżeli czyste złoto stanowi 0,960 masy stopu? Rozwizanie: Obliczamy 0,960 liczby 50 0,960 * 50 = 48g Odp.: W 50g stopu znajduje się 48g czystego złota. Wyroby...

poleca83%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca84%

Ułamki egipskie

Matematyczne Wypracowania UŁAMKI EGIPSKIE Wieskubi Tak podstawowe pojęcia matematyczne, jak liczba czy najprostsze - figury geometryczne, powstały na długo przed pojawieniem się...

poleca83%

Pitagoras

Pitagoras, Pitagoras z Samos, Pythagoras, urodził się około 580 p.n.e., zmarł około 496 p.n.e., grecki matematyk i filozof; przyczynił się znacznie do rozwoju matematyki i astronomii, był twórcą kierunku filozoficznego zwanego pitagoreizmem....

poleca83%

Zagadki matematyczne

1. Pewien młynarz pobierał jako wynagrodzenie dziesiątą część mąki, którą zmełł dla klienta Ile zmełł dla klienta, który po wynagrodzeniu młynarza miał jeden cetnar mąki? 2. Pewien chłopiec miał tyle samo braci i sióstr. Jego siostra Ala...

poleca83%

Liczba "pi"

LICZBA pi Jest to chyba najbardziej znana liczba niewymierna i jednocześnie najstarsza ze znanych nam cyfr tego typu (liczy sobie ok 4000 lat - w Egipcie znaleziono zapiski na jej temat dotowane na ten właśnie okres czasu). jest to nic innego jak...

poleca83%

Ciąg Fibonacciego

1. Ciąg liczbowy Fibonacciego. Ciąg Fibonacciego to ciąg liczb naturalnych zwanych liczbami Fibonacciego określony rekurencyjnie w sposób następujący: F0 = 0 F1= 1 Fn = Fn-1+Fn-2, dla n ≥ 2 Początkowe wartości tego ciągu to: 0, 1, 1, 2,...

poleca84%

Odległość na płaszczyźnie

Zastosowanie wzoru na odległość na płaszczyźnie kartezjańskiej.

poleca84%

Geometria

Łamana zwyczajna- łamana, której odcinki się nie przecinają Płaszczyzna- pojęcie pierwotne-nie posiada definicji; jest zbiorem nieskończenie wielu punktów (karta) Wielokąt-część płaszczyzny ograniczona łamana zwyczajną zamknięta wraz z ta...

poleca84%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca84%

Math Dictionary- słownictwo angielskie z matematyki dla klasy pierwszej liceum

Słownik ten bedzie pomocny dla wszystkich, którzy uczą sie matematyki po angielski. Znajduje się on w załączniku

poleca83%

Liczby (dzieje liczb)

Liczba, jest podstawowym pojęciem matematyki, które powstało w świadomości człowieka na wiele tysięcy lat przed naszą erą, a następnie kształtowało się i rozwijało wraz z rozwojem cywilizacji i kultury. Z chwilą, gdy rozróżnienie między „jeden” i...

poleca83%

Jak liczono kiedyś?

Liczenie jest dziś powszechną, codzienną czynnością. Ludzie liczą we wszystkich zawodach. Gdyby się przyjrzeć zawodom ludzi stwierdzamy, że używane w różnych zawodach liczby występują w różnych postaciach i służą do różnych celów. Również sposoby...

poleca84%

Ściąga z pól figur płaskich.

Pole kwadratu: a2 Ob. 4a Pole trójkąta dowolnego(a,b,c): a•h Ob. a+b+c Pole równobocznego(a,b,b): a2√3 /4(w ułamku) Ob.: 2b+a Obwód trójkąta równobocznego (a,a,a) = 3a Pole prostopadł.: a•h Ob. 2a+2b Pole rombu: a•h lub •d1•d2 Ob= 4a...

poleca84%

Ogólny schemat badania przebiegu funkcji

Spis treści 1. Ogólny schemat badania przebiegu funkcji...........................................3 2. Przykłady...................................................................................................5 1. Ogólny schemat badania...

poleca84%

Funkcje

FUNKCJE Definicja funkcji Funkcją nazywamy takie przekształcenie zbioru argumentów X w zbiór wartości Y, które każdemu elementowi ze zbioru X przyporządkowuje dokładnie jeden element zbioru Y. Zapisujemy to w następujący sposób: y=f(x)...

poleca80%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca84%

Bryły platońskie

Praca znajduje się w załączniku. Jest to prosta prezentacja wykonana w MS PowerPoint - 10 slajdów.

poleca84%

Niedziesiątkowe systemy i liczenia i działania w tych systemach.

Niektórzy twierdza, że odkąd wynaleziono pieniądze i koło, ludzie zaczęli kręcić interesy. Każdy biznesmen tamtych czasów musiał umieć liczyć Np. upolowane mamuty, tygrysy szablozębne itp. mniejsze bądź większe rzeczy. Każdą liczbę trzeba było w...

poleca84%

Czy liczby rzeczywiste są rzeczywiste?

Liczby naturalne są niewątpliwie naturalne. Liczby całkowite niewątpliwie zasługują na nazwę "całkowite". Liczby wymierne należałoby może nazywać liczbami mierzącymi lub wymierzającymi, bowiem wszystkie pomiary wykonujemy w praktyce w liczbach...

poleca83%

Liczby wymierne(Dzielenie)

ILORAZ DWÓCH LICZ O RÓŻNYCH ZNAKACH JEST LICZBĄ UJEMNĄ A ILORAZ DWÓCH LICZ O TAKICH SAMYCH ZNAKACH JEST LICZBĄ DODATNIĄ. NP: -54:9=-6 JEŚLI MAMY NIEPARZYSTĄ LICZBĘ LICZB UJEMNYCH WTEDY WYMIK BĘDZIE UJEMNY, GDY MAMY PARZYSTĄ LIECZBĘ LICZB...

poleca83%

matematyka

HISTORIA MATEMATYKI - WIEK XIX Charakterystyka epoki: • Rewolucja francuska i okres napoleoński stworzyły korzystne warunki dla rewolucji przemysłowej w Europie, co wzmogło uprawianie nauk fizycznych, a tym samym prawie idealne...

poleca83%

Pitagoras

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca84%

Rozwiązywanie układów równań pierwszego stopnia z dwoma niewiadomymi metodą wyznaczników.

W – wyznacznik główny Wx – wyznacznik x Wy – wyznacznik y { a x + b y = c d x + e y = f | a b | W= | d e | = a * e – d * b | c b | Wx= | f e | = c * e – f * b | a c | Wy= | d f | = a *...

poleca84%

Jeszcze jeden "dziwny" dowód

Cześć!! Chciałem Wam jeszcze raz przedstawić dość ciekawy dowód z matematyki. Myślę, że po moich wyjaśnieniach dotyczących dowodu równości "7=3" rozpracowanie tego problemu nie sprawi Wam wielkich trudności. A więc zaczynamy: - weźmy pod uwagę...

poleca84%

Aproksymacja wartości pierwiastka kwadratowego z liczby naturalnej

Praca przedstawia metodę pozwalającą na wyznaczenie przybliżonej wartości pierwiastka kwadratowego z dowolnej liczby naturalnej.

poleca83%

Funkcja trygonometryczna sinus

Definicja: Stosunek długości przyprostokątnej w trójkącie prostokątnym, leżącej naprzeciw kata α do długości przeciwprostokątnej w tym trójkącie. Kat α, to kąt do którego odnosi się funkcja sin. Przeciwprostokątna jest zawsze najdłuższa w...

poleca84%

Wzory: Funkcje sumy, różnic i wielokrotności kąta.

Funkcje sumy kątów: Sin (x + y) = sinx*cosy + cosx*siny Cos (x + y) = cosx*cosy – sinx*siny Tg (x + y) = tgx + tgy/ 1 – tgx*tgy , jeżeli cosx ¹ 0, cosy ¹ 0, cos (x + y) ¹ 0 Ctg (x + y) = ctgx*ctgy – 1/ ctgx + ctgy, jeżeli sinx ¹ 0, siny ¹ 0,...

poleca82%

Matura ustna z matematyki

Egzamin maturalny ustny z matematyki - jesli ktos potrzebuje pomocy w przygotowaniu się do ustnej matury służe pomocą . Oto kontakt : [email protected]

poleca84%

Oszczędzanie na lokatach bankowych

Lokaty bankowe* Lokata bankowa to wciąż najpopularniejszy sposób oszczędzania pieniędzy. Zyski są większe niż przy prowadzeniu zwykłego rachunku bankowego, a ryzyko mniejsze niż przy inwestowaniu w papiery wartościowe. Zwykły student na lokatach...

poleca83%

Bryły obrotowe

Bryły obrotowe są to bryły otrzymane w wyniku obrotu figur płaskich. 1. STOŻEK Pp=pi*R(R do kwadratu) gdzie: Pp-pole podstawy R-promień podstawy Pb=pi*R*l Pb-pole boczne R-promień podstawy l-długość tworzącej Pc=Pp+Pb...

poleca84%

Funkcje Trygonometryczne Kąta Ostrego

Funkcje Stosunek długości przyprostokątnej leżącej naprzeciwko kąta do długości przeciwprostokątnej nazywamy SINUSEM kąta . Stosunek długości przyprostokątnej leżącej przy tym...

poleca84%

Symetria

Oś symetrii figury F nazywamy taką prostą l, o ile istnieje, że obrazem figury F w symetrii osiowej względem tej prostej jest ta sama figura. Punkt A’ o współrzędnych x’, y’ jest obrazem punktu A o współrzędnych x, y w symetrii osiowej względem...

poleca84%

Pitagoras z Samos

PITAGORAS Z SAMOS (570-496 p.n.e.) Pitagoras był filozofem, który pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Pitagorejczycy cenili tylko to co mogło być dowiedzione na drodze...

poleca85%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca81%

Wzory skróconego mnożenia

P R A C A W Z A Ł Ą C Z N I K U !!!! Praca przedstawiona jest w wordzie w formacie tabelki !!! Są tam wypisane wzory skróconego mnożenia : - kwadrat sumy - kwadrat różnicy - różnica kwadratów - sześcian sumy -...

poleca83%

Asymptoty ukośne

Asymptoty ukośne istnieją wtedy i tylko wtedy gdy nie istnieje asymptota pozioma, stad wniosek ze jesli istnieje asymptota pozioma to nie istnieje asymptota ukośna w danym otoczeniu. Schemat badania asymptoty ukośnej: liczymy granice w + i -...

poleca83%

Logika,Zbiory,Potęgi

Wszystko co najażniejsze z logiki, zbiorów i potęg

poleca83%
poleca82%

Twierdzenie Pitagorasa

Twierdzenie Pitagorasa. Jeżeli trójkąt jest prostokątny, to kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych. Założenie: ABC jest prostokątny. Teza: c2 = a2 + b2. Odwrotne twierdzenie Pitagorasa. Jeżeli...

poleca82%

Pitagoras

Urodził się około roku 570 p. n. e. na wyspie Samos (wschodnie kolonie greckie). Po opuszczeniu rodzinnych stron podróżował, aż wreszcie osiadł w mieście Kroton (Italia), gdzie założył swoją słynną szkołę. Do tego czasu zetknął się z naukami...

poleca85%

Pitagoras i jego twierdzenie

Pitagoras (ok. 572-497 p.n.e), filozof grecki. Pochodził z wyspy Samos, czyli wschodniej kolonii jońskiej. Mając lat 40 opuścił Jonię, która walczyła z Persami, i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi systemami...

poleca84%

Funkcje Trygonometryczne

1.Wyznacz sin i cos kąta którego ramię wodzące przechodzi przez punkt P=(8,-6) 2.Zbuduj kąt alfa wiedząc że cos alfa = - 3/7 3.Oblicz sin alfa wiedząc że cos alfa=2/5 i 270 stopni

poleca84%
poleca83%

Podstawowe Pojęcia Logiki

ZDANIEM w sensie logiki nazywamy wyrażenie, któemu można w sposób jednoznaczny przyporządkować jedną z dwóch ocen- prawdę lub fałsz. ZDANIE PRAWDZIWE ma wartość logiczną 1 ZDANIE FAłSZYWE ma wartość logiczną 0 SPóJNIKI LOGICZNE: * i ^ *...

poleca83%

Statystyka opisowa

Zastosowanie statystyki opisowej w zadaniach - poziom podstawowy - technikum.

poleca83%

Rachunek całkowy

SPIS TREŚCI. 1. CAŁKA NIEOZNACZONA: a. Całka nieoznaczona. b. Funkcja pierwotna. c. Całki funkcji elementarnych. d. Tablica całek. e. Podstawowe prawa całkowania. f. Całkowanie funkcji trygonometrycznych. g. Całkowanie funkcji wymiernej....

poleca83%

Wzory skróconego monożenia

(a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 a2 - b2 = (a + b)(a - b) (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a - b)3 = a3 - 3a2b + 3ab2 - b3 a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)

poleca82%

Cechy podzielności.

Przez 2 i 5 Przez 2 (lub przez 5) są podzielne te i tylko te liczby, których cyfra jedności, wzięta jako liczba jest podzielna przez 2 (lub odpowiednio przez 5), lub które są zakończone zerem. Przez 4 i 25 Przez 4 (lub przez 25) są podzielne te...

poleca82%

Tales z Miletu i jego wkład w rozwój matematyki

Tales z Miletu (ok.620- ok.540 p.n.e.) Grecki filozof i matematyk, prawdopodobnie pierwszy uczony i filozof europejski. Jeden z twórców jońskiej filozofii przyrody. Urodził się w Milecie (miasto greckie na...

poleca83%

Pitagoras

Pitagoras (ok. 572-497 p.n.e) grecki matematyk. Pochodził z wyspy Samos, czyli wschodniej kolonii japońskiej. Mając 40 lat, opuścił Jonię, która walczyła z Persami i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi...

poleca83%

Funkcje cyklometryczne

1. y=arcsinx wtedy i tylko wtedy gdy x=siny Dziedziną jest zbiór 2. y=arccosx wtedy i tylko wtedy gdy x=cosy Dziedziną jest zbiór 3. y=arctgx wtedy i tylko wtedy gdy x=tgy Dziedziną jest zbiór liczb rzeczywistych 4. y=arcctgx wtedy i...

poleca83%

Programowanie liniowe

W działalności gospodarczej realizowana jest zasada racjonalnego gospodarowania. Zasada ta orzeka, ze stojące do dyspozycji środki umożliwiające realizacje jakiegoś celu powinny być użyte w sposób gwarantujący maksymalna realizacje postanowionego...

poleca83%

Walec, stożek, kula

Matematyka Walec jest to bryła ograniczona powierzchnią cylindryczną o kierującej zamkniętej oraz dwiema płaszczyznami równoległymi stanowiącymi podstawy walca. Za kierującą powierzchni walcowej można przyjąć kontur którejkolwiek z podstaw...

poleca83%

Trójkąt Pascala

W załącznik mamy wykonany trójkąt Pascala.

poleca83%

Bryły Platońskie

Biografia Platona: Platon (ok. 437 - 347 p.n.e.), filozof grecki, swoje zamiłowania do filozofii zawdzięcza Sokratesowi. Po śmierci Sokratesa odbył liczne podróże podczas których poznał wiele poglądów w tym doktryny orfickie i pitagorejskie o...

poleca81%

Liczby doskonałe

Liczby doskonałe to takie liczby których suma dzielników tworzy tę właśnie liczbę. Do tej pory znaleziono 36 liczb doskonałych podam 4 najmniejsze: 6={1+2+3} 28={1+2+4+7+14} 496={1+2=4+8+16+31+62+124+248}...

poleca83%

Walec, ostroslup, graniastoslup, funkcje, miejsce zerowe (mat. na spr)

1. Pole powierzchni walca Pc=2Pp+Pb Pc=2πr²+2πrH 2. Objętość walca V=Pp•H V=πr²•H 3. Objętość ostrosłupa V=⅓Pp•H Pc=Pp+Pb 4. Objętość i pole graniastosłupa V=Pp•H Pc=Pp+Pb 5. Bryłami obrotowymi nazywamy bryły, powstałe w wyniku...

poleca82%

Funkcje

Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy takie przyporządkowanie,w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y. Zdanie "Funkcja f argumentom ze zbioru X przyporządkowuje wartości ze...

poleca83%

Wektory w matematyce Referat

Wektor Rachunek wektorowy jest to dział matematyki, część geometrii analitycznej, rozwijany w XIX w. głównie przez W.R. Hamiltona, irlandzkiego matematyka badający własności działań na wektorach. Wektor to uporządkowana para punktów A, B,...

poleca82%

Złote myśli związane z matematyką

"Między duchem a materią pośredniczy matematyka" HUGO STEINHAUS -------------------------------------------------------------------------------- "Oprócz matematyki nie istnieje żadna niezawodna wiedza z wyjątkiem tej, która wywodzi się z...

poleca82%

Czego nauczyliśmy się będąc w klasie 1 gimnazjum?

1. Działania i liczby 1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną...

poleca83%

Zadanie z trapezem

W trapezie podstawy mają długość 8 cm i 4 cm. Poprowadzono odcinek do nich równoległy, który dzieli pole trapezu na połowę. Oblicz długość tego odcinka.

poleca76%

Podzielność liczb przez liczbę 6

Jeżeli chcemy sprawdzic czy liczba jest podzielna przez 6 musimy zobaczyc czy suma cyfr jes podzielna przez 3 i 2 , ponieważ 3x2=6 . Np. liczba 204 jest podzielna przez 6 , wyjaśniam dlaczego : 2+0+4 = 6 , a 6 jest podzielne przez 3 , przez 2...

poleca83%

Dzieje Liczb

Liczba, jest podstawowym pojęciem matematyki, które powstało w świadomości człowieka na wiele tysięcy lat przed naszą erą, a następnie kształtowało się i rozwijało wraz z rozwojem cywilizacji i kultury. Z chwilą, gdy rozróżnienie między „jeden” i...

poleca83%

Materiały z kl III gm.:bryły obrotowe, algebra, graniastosłupy, ostrosłupy itp.

1. Bryłami obrotowymi nazywamy bryły, które powstają w wyniku obrotu figur płaskich wikół osi obrotu. 2. Wysokością walca nazywamy dwie podstawy i prostopadły ddo nich. 3. Twożąca stożka jest to odcinek łączący wierzchołek z dowolnym punktem...

poleca81%

Pomiar czasu na przestrzeni dziejów

Historia początków pomiaru czasu jest bardzo odległa i wiąże się ściśle z rozwojem badań astronomicznych. Rachuba czasu odegrała również ważną rolę w kartografii, a także miała i ma znaczenie w życiu codziennym. Powiązanie jej z astronomią wynika...

poleca83%

Okrąg

Okrąg – zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu o zadaną odległość. Słowo „okrąg” jest często mylone ze słowem „okręg” oznaczającym obszar administracyjny. Definicja Niech S = (x0,y0) będzie...