profil

Matematyka

(295)
Dodaj zadanie

Masz problem z pracą domową?
Pomożemy rozwiązać Twoje zadania

22 online
poleca81%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca84%

Wzory skróconego mnożenia.

Wzory skróconego mnożenia (a+b)2 = a2 + 2ab + b2 - kwadrat sumy (a-b)2 = a2 - 2ab + b2 - kwadrat różnicy (a+b)3 = a3 + 3a2b + 3ab2 + b3 - sześcian sumy (a-b)3 = a3 - 3a2b + 3ab2 -...

poleca81%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca83%

Ciąg Fibonacciego

1. Ciąg liczbowy Fibonacciego. Ciąg Fibonacciego to ciąg liczb naturalnych zwanych liczbami Fibonacciego określony rekurencyjnie w sposób następujący: F0 = 0 F1= 1 Fn = Fn-1+Fn-2, dla n ≥ 2 Początkowe wartości tego ciągu to: 0, 1, 1, 2,...

poleca84%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca83%

Kąty i trójkąty - prezentacja

W tej oto prezentacji znajdziecie wszystkie niezbędne informacje na temat kątów i trójkątów. Prezentacja zawiera 73 slajdy w tym 10 zadań z rozwiązaniem :) Pozdrawiam serdecznie ;D

poleca80%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca84%

Jeszcze jeden "dziwny" dowód

Cześć!! Chciałem Wam jeszcze raz przedstawić dość ciekawy dowód z matematyki. Myślę, że po moich wyjaśnieniach dotyczących dowodu równości "7=3" rozpracowanie tego problemu nie sprawi Wam wielkich trudności. A więc zaczynamy: - weźmy pod uwagę...

poleca84%

Aproksymacja wartości pierwiastka kwadratowego z liczby naturalnej

Praca przedstawia metodę pozwalającą na wyznaczenie przybliżonej wartości pierwiastka kwadratowego z dowolnej liczby naturalnej.

poleca84%

Liczby Pierwsze - program do wyszukiwania liczb pierwszych

Dokumentacja do programu Liczby Pierwsze v1.1 ***************************************** Program służy do wyszukiwania wszystkich liczb pierwszych w danym przedziale naturalnym (liczby całkowite od zera do nieskończoności). Obsługa...

poleca84%

Ściąga z pól figur płaskich.

Pole kwadratu: a2 Ob. 4a Pole trójkąta dowolnego(a,b,c): a•h Ob. a+b+c Pole równobocznego(a,b,b): a2√3 /4(w ułamku) Ob.: 2b+a Obwód trójkąta równobocznego (a,a,a) = 3a Pole prostopadł.: a•h Ob. 2a+2b Pole rombu: a•h lub •d1•d2 Ob= 4a...

poleca84%

Rozwiązywanie układów równań pierwszego stopnia z dwoma niewiadomymi metodą wyznaczników.

W – wyznacznik główny Wx – wyznacznik x Wy – wyznacznik y { a x + b y = c d x + e y = f | a b | W= | d e | = a * e – d * b | c b | Wx= | f e | = c * e – f * b | a c | Wy= | d f | = a *...

poleca84%

wzory

Sumy i różnice funkcji trygonometrycznych: sin(x+y)=sinxcosy+cosxsiny sin(x-y)=sinxcosy-cosxsiny cos(x+y)=cosxcosy-sinxsiny cos(x-y)=cosxcosy+sinxsiny Wielokąty: Wzór na sumę kątów wewnętrznych dowolnego wielokąta: (n-2)*1800 n-liczba boków...

poleca84%

Przeliczanie

DROGI PRACOWNIKU !!! Słyszałem, że chciałbyś podwyżkę! Czy Ty nie masz honoru? Czy nie wiesz jak mało pracujesz? Policzmy: Rok majak wiadomo 365 dni. A Ty codziennie śpisz 8 godzin - to są 122 dni w roku. Pozostaje zatem 243 dni, poza tym...

poleca83%

Walec, stożek, kula

Matematyka Walec jest to bryła ograniczona powierzchnią cylindryczną o kierującej zamkniętej oraz dwiema płaszczyznami równoległymi stanowiącymi podstawy walca. Za kierującą powierzchni walcowej można przyjąć kontur którejkolwiek z podstaw...

poleca83%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca84%

Wektory w matematyce Referat

Wektor Rachunek wektorowy jest to dział matematyki, część geometrii analitycznej, rozwijany w XIX w. głównie przez W.R. Hamiltona, irlandzkiego matematyka badający własności działań na wektorach. Wektor to uporządkowana para punktów A, B,...

poleca83%

Ogólny schemat badania przebiegu funkcji

Spis treści 1. Ogólny schemat badania przebiegu funkcji...........................................3 2. Przykłady...................................................................................................5 1. Ogólny schemat badania...

poleca83%

Symetria

Oś symetrii figury F nazywamy taką prostą l, o ile istnieje, że obrazem figury F w symetrii osiowej względem tej prostej jest ta sama figura. Punkt A’ o współrzędnych x’, y’ jest obrazem punktu A o współrzędnych x, y w symetrii osiowej względem...

poleca78%

Twierdzenie Pitagorasa

Regułka z twierdzenia Pitagorasa: Jeżeli trójkąt jest prostokątny to suma kwadratów długości dwóch krótszych boków trójkąta jest równakwadratowi długości najdłuższego boku. a2+b2=c2 a,b- długości przyprostokątnych c- długość...

poleca84%

Geometria

Łamana zwyczajna- łamana, której odcinki się nie przecinają Płaszczyzna- pojęcie pierwotne-nie posiada definicji; jest zbiorem nieskończenie wielu punktów (karta) Wielokąt-część płaszczyzny ograniczona łamana zwyczajną zamknięta wraz z ta...

poleca82%

Tales z Miletu i jego wkład w rozwój matematyki

Tales z Miletu (ok.620- ok.540 p.n.e.) Grecki filozof i matematyk, prawdopodobnie pierwszy uczony i filozof europejski. Jeden z twórców jońskiej filozofii przyrody. Urodził się w Milecie (miasto greckie na...

poleca82%

Asymptoty ukośne

Asymptoty ukośne istnieją wtedy i tylko wtedy gdy nie istnieje asymptota pozioma, stad wniosek ze jesli istnieje asymptota pozioma to nie istnieje asymptota ukośna w danym otoczeniu. Schemat badania asymptoty ukośnej: liczymy granice w + i -...

poleca82%

Wzory skróconego monożenia

(a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 a2 - b2 = (a + b)(a - b) (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a - b)3 = a3 - 3a2b + 3ab2 - b3 a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)

poleca82%

Jak liczono kiedyś?

Liczenie jest dziś powszechną, codzienną czynnością. Ludzie liczą we wszystkich zawodach. Gdyby się przyjrzeć zawodom ludzi stwierdzamy, że używane w różnych zawodach liczby występują w różnych postaciach i służą do różnych celów. Również sposoby...