profil

Matematyka

(294)
Lista
Polecamy | Najnowsze
poleca81%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca83%

Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca84%

Wzory skróconego mnożenia

Kwadrat sumy (a+b)2 = a2 + 2ab + b2 Kwadrat różnicy (a-b)2 = a2 - 2ab + b2 Sześcian sumy (a+b)3 = a3 + 3a2b + 3ab2 + b3 Sześcian różnicy (a-b)3 = a3 - 3a2b + 3ab2 - b3 Różnica kwadratów a2-b2=(a-b) * (a+b) Suma sześcianów...

poleca82%

Układy równań - metoda wyznaczników

Niżej prezentuje jedną, moim zdaniem najciekawszą, z metod rozwiązywania ukladow równań. Przykladowo schemat ogolny ukladu uwzględniajacy wspolczynniki przy zmiennych. a1X + b1Y = c1 a2X + b2Y = c2 Powstają nam trzy macierze: [ a1...

poleca84%

Bryły Platońskie

Biografia Platona: Platon (ok. 437 - 347 p.n.e.), filozof grecki, swoje zamiłowania do filozofii zawdzięcza Sokratesowi. Po śmierci Sokratesa odbył liczne podróże podczas których poznał wiele poglądów w tym doktryny orfickie i pitagorejskie o...

poleca84%
poleca84%

Funkcje Trygonometryczne

1.Wyznacz sin i cos kąta którego ramię wodzące przechodzi przez punkt P=(8,-6) 2.Zbuduj kąt alfa wiedząc że cos alfa = - 3/7 3.Oblicz sin alfa wiedząc że cos alfa=2/5 i 270 stopni

poleca84%

Zbiór wzorów i definicji

1 ARYTMETYKA I ALGEBRA *Zbiory liczbowe N-zbiór liczb naturalnych np.0,1,2,3,4,5,6,7,8,9,... C-zbiór liczb całkowitych np...-3,-2,-1,0,1,2,3......

poleca83%

Cechy podzielności.

Przez 2 i 5 Przez 2 (lub przez 5) są podzielne te i tylko te liczby, których cyfra jedności, wzięta jako liczba jest podzielna przez 2 (lub odpowiednio przez 5), lub które są zakończone zerem. Przez 4 i 25 Przez 4 (lub przez 25) są podzielne te...

poleca84%

Statystyka opisowa

Zastosowanie statystyki opisowej w zadaniach - poziom podstawowy - technikum.

poleca84%

Pitagoras z Samos

PITAGORAS Z SAMOS (570-496 p.n.e.) PITAGORAS Z SAMOS (572- 496 p.n.e.)- grecki matematyk i filozof, przyczynił się znacznie do rozwoju matematyki i astronomii. Był twórcą kierunku filozoficznego zwanego pitagoreizmem. Nie pozostawił po sobie...

poleca83%

Pomiar czasu na przestrzeni dziejów

Historia początków pomiaru czasu jest bardzo odległa i wiąże się ściśle z rozwojem badań astronomicznych. Rachuba czasu odegrała również ważną rolę w kartografii, a także miała i ma znaczenie w życiu codziennym. Powiązanie jej z astronomią wynika...

poleca83%

&Pi - historia

Notatka ucznia: Najważniejsze daty w historii &pi: 2000 p.n.e. - Babilończycy przyjmują przybliżoną wartość &pi równą 3. 250 p.n.e. - Archimedes określa z dobrą dokładnością przybliżoną wartość &pi jako 22/7. 1706 - Wiliam Jones...

poleca84%

Kąty i trójkąty - prezentacja

W prezentacji znajdziecie wszystkie niezbędne informacje na temat kątów i trójkątów. Prezentacja zawiera 73 slajdy w tym 10 zadań z rozwiązaniem.

poleca84%

Diofantos - pierwszy matematyk...

Diofantos - z Aleksandrii, III wiek n.e. Był pierwszy matematyk, któy zajął się algebrą. Niewiele wiemy o jego życiu. Pewne szczegóły możemy poznać rozwiązując zadanie z Epifatium Diofanta zamieszczonego w antologii z XIV wieku mnicha Maksymusa...

poleca83%

Liczba "pi"

LICZBA pi Jest to chyba najbardziej znana liczba niewymierna i jednocześnie najstarsza ze znanych nam cyfr tego typu (liczy sobie ok 4000 lat - w Egipcie znaleziono zapiski na jej temat dotowane na ten właśnie okres czasu). jest to nic innego jak...

poleca84%

Różne tematy z Matematyki

Patrz załączniki: - Trójkąt równoboczny i inne - Wektory - Granice funkcji - Wzory Wiete

poleca84%

Asymptoty ukośne

Asymptoty ukośne istnieją wtedy i tylko wtedy gdy nie istnieje asymptota pozioma, stad wniosek ze jesli istnieje asymptota pozioma to nie istnieje asymptota ukośna w danym otoczeniu. Schemat badania asymptoty ukośnej: liczymy granice w + i -...

poleca83%

Funkcje

Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy takie przyporządkowanie,w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y. Zdanie "Funkcja f argumentom ze zbioru X przyporządkowuje wartości ze...

poleca82%

Czego nauczyliśmy się będąc w klasie 1 gimnazjum?

1. Działania i liczby 1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną...

poleca84%

Walec, ostroslup, graniastoslup, funkcje, miejsce zerowe (mat. na spr)

1. Pole powierzchni walca Pc=2Pp+Pb Pc=2πr²+2πrH 2. Objętość walca V=Pp•H V=πr²•H 3. Objętość ostrosłupa V=⅓Pp•H Pc=Pp+Pb 4. Objętość i pole graniastosłupa V=Pp•H Pc=Pp+Pb 5. Bryłami obrotowymi nazywamy bryły, powstałe w wyniku...

poleca83%

Twierdzenie Pitagorasa

Twierdzenie Pitagorasa. Jeżeli trójkąt jest prostokątny, to kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych. Założenie: ABC jest prostokątny. Teza: c2 = a2 + b2. Odwrotne twierdzenie Pitagorasa. Jeżeli...

poleca84%

Jeszcze jeden "dziwny" dowód

Cześć!! Chciałem Wam jeszcze raz przedstawić dość ciekawy dowód z matematyki. Myślę, że po moich wyjaśnieniach dotyczących dowodu równości "7=3" rozpracowanie tego problemu nie sprawi Wam wielkich trudności. A więc zaczynamy: - weźmy pod uwagę...

poleca81%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca84%

Walec, stożek, kula

Matematyka Walec jest to bryła ograniczona powierzchnią cylindryczną o kierującej zamkniętej oraz dwiema płaszczyznami równoległymi stanowiącymi podstawy walca. Za kierującą powierzchni walcowej można przyjąć kontur którejkolwiek z podstaw...

poleca83%
poleca83%

Egzaminy kompetencji z matematyki

Matematyka Zestaw egzaminacyjny I Życzę powodzenia! -------------------------------------------------------------------------------- 1. Oblicz 132% różnicy liczb: 115,4 i -84,6. a) 15 b) 1297 c) 264 d) -3 2. Doprowadź wyrażenie...

poleca83%

Funkcje cyklometryczne

1. y=arcsinx wtedy i tylko wtedy gdy x=siny Dziedziną jest zbiór 2. y=arccosx wtedy i tylko wtedy gdy x=cosy Dziedziną jest zbiór 3. y=arctgx wtedy i tylko wtedy gdy x=tgy Dziedziną jest zbiór liczb rzeczywistych 4. y=arcctgx wtedy i...

poleca83%

Funkcja trygonometryczna-wzory

sin(α+β)= sinαcosβ+cos sinβ sin(α-β)= sinαcosβ-cosαsinβ sin2α=2sinα cosα sinα+sinβ=2sin(α+β)/2 cos(α-β)/2 sinα-sinβ=2cos(α+β)/2 sin(α-β)/2 |sin α/2|=√(1-cosα)/2 sin3α=3sin2α-4nin3α sin(-α)=sin(180o-α) sinα=2sinα/2 cosα/2...

poleca84%

Ogólny schemat badania przebiegu funkcji

Spis treści 1. Ogólny schemat badania przebiegu funkcji...........................................3 2. Przykłady...................................................................................................5 1. Ogólny schemat badania...

poleca82%

Liczby

1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną liczbą naturalną ( np. 1/7, 3...

poleca83%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca84%
poleca84%

Liczby wymierne - dzielenie

ILORAZ DWÓCH LICZ O RÓŻNYCH ZNAKACH JEST LICZBĄ UJEMNĄ A ILORAZ DWÓCH LICZ O TAKICH SAMYCH ZNAKACH JEST LICZBĄ DODATNIĄ. Przykład -54:9=-6 JEŚLI MAMY NIEPARZYSTĄ LICZBĘ LICZB UJEMNYCH WTEDY WYNIK BĘDZIE UJEMNY, GDY MAMY PARZYSTĄ LICZBĘ...

poleca82%

Dowody graficzne twierdzenia Pitagorasa

Przedstawiam tutaj trzy graficzne dowody znanego twierdzenia Pitagorasa przygotowane przeze mnie w programie Paint. Mam nadzieję, że znajdzie się ktoś, komu materiały te okażą się pomocne. Powodzenia...

poleca83%

Wzory skróconego monożenia

(a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 a2 - b2 = (a + b)(a - b) (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a - b)3 = a3 - 3a2b + 3ab2 - b3 a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)

poleca83%

Podstawowe Pojęcia Logiki

ZDANIEM w sensie logiki nazywamy wyrażenie, któemu można w sposób jednoznaczny przyporządkować jedną z dwóch ocen- prawdę lub fałsz. ZDANIE PRAWDZIWE ma wartość logiczną 1 ZDANIE FAłSZYWE ma wartość logiczną 0 SPóJNIKI LOGICZNE: * i ^ *...

poleca82%

Logika,Zbiory,Potęgi

Wszystko co najażniejsze z logiki, zbiorów i potęg

poleca82%

Matura ustna z matematyki

Egzamin maturalny ustny z matematyki - jesli ktos potrzebuje pomocy w przygotowaniu się do ustnej matury służe pomocą . Oto kontakt : [email protected]

poleca82%

Funkcje trygonometryczne - wzory

Funkcje trygonometryczne - wzory 1. sin2x=2sinxcosx 2. cos2x=cosxcox-sinxsinx 3. sin(x+y)=sinxcosy+cosxsiny 4. sin(x-y)=sinxcosy-cosxsiny 5. cos(x+y)=cosxcosy-sinxsiny 6. cos(x-y)=cosxcosy+sinxsiny 7. sinx+siny=2sin((x+y)/2)cos((x-y)/2)...

poleca81%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca83%

Bryły obrotowe, algebra, wzory skróconego mnożenia

1. Bryłami obrotowymi nazywamy bryły, które powstają w wyniku obrotu figur płaskich wikół osi obrotu. 2. Wysokością walca nazywamy dwie podstawy i prostopadły ddo nich. 3. Twożąca stożka jest to odcinek łączący wierzchołek z dowolnym punktem...

poleca84%

Funkcje

FUNKCJE Definicja funkcji Funkcją nazywamy takie przekształcenie zbioru argumentów X w zbiór wartości Y, które każdemu elementowi ze zbioru X przyporządkowuje dokładnie jeden element zbioru Y. Zapisujemy to w następujący sposób: y=f(x)...

poleca84%

Pitagoras

Pitagoras, Pitagoras z Samos, Pythagoras, urodził się około 580 p.n.e., zmarł około 496 p.n.e., grecki matematyk i filozof; przyczynił się znacznie do rozwoju matematyki i astronomii, był twórcą kierunku filozoficznego zwanego pitagoreizmem....

poleca84%

Przeliczanie

DROGI PRACOWNIKU !!! Słyszałem, że chciałbyś podwyżkę! Czy Ty nie masz honoru? Czy nie wiesz jak mało pracujesz? Policzmy: Rok majak wiadomo 365 dni. A Ty codziennie śpisz 8 godzin - to są 122 dni w roku. Pozostaje zatem 243 dni, poza tym...

poleca82%

Wzory skróconego mnożenia

P R A C A W Z A Ł Ą C Z N I K U !!!! Praca przedstawiona jest w wordzie w formacie tabelki !!! Są tam wypisane wzory skróconego mnożenia : - kwadrat sumy - kwadrat różnicy - różnica kwadratów - sześcian sumy -...

poleca80%

Twierdzenie Pitagorasa

Regułka z twierdzenia Pitagorasa: Jeżeli trójkąt jest prostokątny to suma kwadratów długości dwóch krótszych boków trójkąta jest równakwadratowi długości najdłuższego boku. a2+b2=c2 a,b- długości przyprostokątnych c- długość...

poleca84%

Zadanie z trapezem

W trapezie podstawy mają długość 8 cm i 4 cm. Poprowadzono odcinek do nich równoległy, który dzieli pole trapezu na połowę. Oblicz długość tego odcinka.

poleca83%

Jak liczono kiedyś?

Liczenie jest dziś powszechną, codzienną czynnością. Ludzie liczą we wszystkich zawodach. Gdyby się przyjrzeć zawodom ludzi stwierdzamy, że używane w różnych zawodach liczby występują w różnych postaciach i służą do różnych celów. Również sposoby...