profil

Matematyka

(295)
Dodaj zadanie

Masz problem z pracą domową?
Pomożemy rozwiązać Twoje zadania

30 online
poleca81%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca82%

Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca84%

Wzory skróconego mnożenia.

Wzory skróconego mnożenia (a+b)2 = a2 + 2ab + b2 - kwadrat sumy (a-b)2 = a2 - 2ab + b2 - kwadrat różnicy (a+b)3 = a3 + 3a2b + 3ab2 + b3 - sześcian sumy (a-b)3 = a3 - 3a2b + 3ab2 -...

poleca82%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca81%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca84%

Pitagoras i jego twierdzenie

Pitagoras (ok. 572-497 p.n.e), filozof grecki. Pochodził z wyspy Samos, czyli wschodniej kolonii jońskiej. Mając lat 40 opuścił Jonię, która walczyła z Persami, i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi systemami...

poleca84%

Prawa logiczne

Prawa logiczne: Prawo podwójnego przeczenia Prawo wyłączonego środka Prawo transpozycji Zaprzeczenie implikacji Reguła odrywania Przechodniość implikacji Prawo rozdzielczości alternatywy Rozdzielczość koniunkcji -- Patrz załącznik

poleca80%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca82%

Układy równań - metoda wyznaczników

Niżej prezentuje jedną, moim zdaniem najciekawszą, z metod rozwiązywania ukladow równań. Przykladowo schemat ogolny ukladu uwzględniajacy wspolczynniki przy zmiennych. a1X + b1Y = c1 a2X + b2Y = c2 Powstają nam trzy macierze: [ a1...

poleca84%

Math Dictionary- słownictwo angielskie z matematyki dla klasy pierwszej liceum

Słownik ten bedzie pomocny dla wszystkich, którzy uczą sie matematyki po angielski. Znajduje się on w załączniku

poleca84%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca83%

Tales z Miletu i jego wkład w rozwój matematyki

Tales z Miletu (ok.620- ok.540 p.n.e.) Grecki filozof i matematyk, prawdopodobnie pierwszy uczony i filozof europejski. Jeden z twórców jońskiej filozofii przyrody. Urodził się w Milecie (miasto greckie na...

poleca83%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca84%

Praca semestralna z matematyki

All by streq : ) wszystko macie w zalaczniku a w/g mnie warto tam zajrzec bo dostalem 5+ :))) Dawno, dawno temu żył sobie król, który strasznie się nudził. Nie bawił go fechtunek, ani jazda konna, ani nawet turniej rycerski. Był tak...

poleca84%

Aproksymacja wartości pierwiastka kwadratowego z liczby naturalnej

Praca przedstawia metodę pozwalającą na wyznaczenie przybliżonej wartości pierwiastka kwadratowego z dowolnej liczby naturalnej.

poleca83%

Czy liczby rzeczywiste są rzeczywiste?

Liczby naturalne są niewątpliwie naturalne. Liczby całkowite niewątpliwie zasługują na nazwę "całkowite". Liczby wymierne należałoby może nazywać liczbami mierzącymi lub wymierzającymi, bowiem wszystkie pomiary wykonujemy w praktyce w liczbach...

poleca83%

Oszczędzanie na lokatach bankowych

Lokaty bankowe* Lokata bankowa to wciąż najpopularniejszy sposób oszczędzania pieniędzy. Zyski są większe niż przy prowadzeniu zwykłego rachunku bankowego, a ryzyko mniejsze niż przy inwestowaniu w papiery wartościowe. Zwykły student na lokatach...

poleca84%

wzory

Sumy i różnice funkcji trygonometrycznych: sin(x+y)=sinxcosy+cosxsiny sin(x-y)=sinxcosy-cosxsiny cos(x+y)=cosxcosy-sinxsiny cos(x-y)=cosxcosy+sinxsiny Wielokąty: Wzór na sumę kątów wewnętrznych dowolnego wielokąta: (n-2)*1800 n-liczba boków...

poleca82%

Kąty i trójkąty - prezentacja

W tej oto prezentacji znajdziecie wszystkie niezbędne informacje na temat kątów i trójkątów. Prezentacja zawiera 73 slajdy w tym 10 zadań z rozwiązaniem :) Pozdrawiam serdecznie ;D

poleca84%

Rozwiązywanie układów równań pierwszego stopnia z dwoma niewiadomymi metodą wyznaczników.

W – wyznacznik główny Wx – wyznacznik x Wy – wyznacznik y { a x + b y = c d x + e y = f | a b | W= | d e | = a * e – d * b | c b | Wx= | f e | = c * e – f * b | a c | Wy= | d f | = a *...

poleca81%

Ciąg Fibonacciego

1. Ciąg liczbowy Fibonacciego. Ciąg Fibonacciego to ciąg liczb naturalnych zwanych liczbami Fibonacciego określony rekurencyjnie w sposób następujący: F0 = 0 F1= 1 Fn = Fn-1+Fn-2, dla n ≥ 2 Początkowe wartości tego ciągu to: 0, 1, 1, 2,...

poleca84%

Wektory w matematyce Referat

Wektor Rachunek wektorowy jest to dział matematyki, część geometrii analitycznej, rozwijany w XIX w. głównie przez W.R. Hamiltona, irlandzkiego matematyka badający własności działań na wektorach. Wektor to uporządkowana para punktów A, B,...

poleca83%

Symetria

Oś symetrii figury F nazywamy taką prostą l, o ile istnieje, że obrazem figury F w symetrii osiowej względem tej prostej jest ta sama figura. Punkt A’ o współrzędnych x’, y’ jest obrazem punktu A o współrzędnych x, y w symetrii osiowej względem...

poleca84%

Co to jest skala?

Konspekt lekcji matematyki w klasie IV Temat: Co to jest skala? Prowadzący : Marzena Majewska Czas trwania lekcji: 45 min Cele ogólne: Uczeń poznaje pojęcie skali. Cele operacyjne: Uczeń: - zna pojecie skali - rozumie pojęcie...