profil

Matematyka

(295)
Dodaj zadanie

Masz problem z pracą domową?
Pomożemy rozwiązać Twoje zadania

4 online
poleca85%

Narodziny dedukcji i meody aksjomatycznej

W krótkiej serii artykułów nie sposób wyczerpać problemów związanych z narodzinami dedukcji i metody aksjomatycznej. Warto jednakże na drodze do wyjaśnienia ich genezy zrobić jeszcze kilka kroków - nawet za cenę stopniowo oddalenia się od...

poleca83%

Bryły platońskie

Praca znajduje się w załączniku. Jest to prosta prezentacja wykonana w MS PowerPoint - 10 slajdów.

poleca84%

Odległość na płaszczyźnie

Zastosowanie wzoru na odległość na płaszczyźnie kartezjańskiej.

poleca83%
poleca83%

Rachunek prawdopodobieństwa

Prawdopodobieństwo ma wpływ na całe nasze życie. Nie możemy ze stuprocentową szybkością przewidzieć co nas spotka, jednak dysponując pewną wiedzą jesteśmy w stanie określić jakie jest prawdopodobieństwo, że dana rzecz wydarzy się lub nie....

poleca84%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca84%

Pitagoras i jego twierdzenie

Pitagoras (ok. 572-497 p.n.e), filozof grecki. Pochodził z wyspy Samos, czyli wschodniej kolonii jońskiej. Mając lat 40 opuścił Jonię, która walczyła z Persami, i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi systemami...

poleca83%

Zadanie o trójkącie prostokątnym wykorzystujące twierdzenie o dwusiecznej

Oblicz stosunek pola koła opisanego na trójkącie prostokątnym do pola koła wpisanego w tym trójkącie, wiedząc, że dwusieczna kąta prostego dzieli przeciwprostokątną w stosunku 3:4.

poleca83%

Ciąg Fibonacciego

1. Ciąg liczbowy Fibonacciego. Ciąg Fibonacciego to ciąg liczb naturalnych zwanych liczbami Fibonacciego określony rekurencyjnie w sposób następujący: F0 = 0 F1= 1 Fn = Fn-1+Fn-2, dla n ≥ 2 Początkowe wartości tego ciągu to: 0, 1, 1, 2,...

poleca83%

Liczba "pi"

LICZBA pi Jest to chyba najbardziej znana liczba niewymierna i jednocześnie najstarsza ze znanych nam cyfr tego typu (liczy sobie ok 4000 lat - w Egipcie znaleziono zapiski na jej temat dotowane na ten właśnie okres czasu). jest to nic innego jak...

poleca84%

Prawa logiczne

Prawa logiczne: Prawo podwójnego przeczenia Prawo wyłączonego środka Prawo transpozycji Zaprzeczenie implikacji Reguła odrywania Przechodniość implikacji Prawo rozdzielczości alternatywy Rozdzielczość koniunkcji -- Patrz załącznik

poleca84%
poleca84%

Czy liczby rzeczywiste są rzeczywiste?

Liczby naturalne są niewątpliwie naturalne. Liczby całkowite niewątpliwie zasługują na nazwę "całkowite". Liczby wymierne należałoby może nazywać liczbami mierzącymi lub wymierzającymi, bowiem wszystkie pomiary wykonujemy w praktyce w liczbach...

poleca83%

&Pi - historia

Notatka ucznia: Najważniejsze daty w historii &pi: 2000 p.n.e. - Babilończycy przyjmują przybliżoną wartość &pi równą 3. 250 p.n.e. - Archimedes określa z dobrą dokładnością przybliżoną wartość &pi jako 22/7. 1706 - Wiliam Jones...

poleca84%

Funkcje Trygonometryczne

1.Wyznacz sin i cos kąta którego ramię wodzące przechodzi przez punkt P=(8,-6) 2.Zbuduj kąt alfa wiedząc że cos alfa = - 3/7 3.Oblicz sin alfa wiedząc że cos alfa=2/5 i 270 stopni

poleca82%

Trójkąt prostokątny - twierdzenie Pitagorasa i Funkcje Trygonometryczne.

Przesyłam wam mojej roboty plik w exelu, który liczy twierdzenie Pitagorasa i Funkcje Trygonometryczne. Funkcji nie jestem pewien na 100%, więc zawsze sprawdzajcie. Pobierajcie i korzystajcie :)

poleca83%

matematyka-czy jest potrzebna ?czy nie?

Matematyka-a cusz to za przedmiot? matematyka jest piękna i niwezwykle pożyteczna,w jej symbola twierdzeniach i zasadach kryje sie wiedza o swiecie i żadzących w nim prawach(ojejku troche pomyliłam)ale wiecie co tak naprawde mam jom w...

poleca84%

Math Dictionary- słownictwo angielskie z matematyki dla klasy pierwszej liceum

Słownik ten bedzie pomocny dla wszystkich, którzy uczą sie matematyki po angielski. Znajduje się on w załączniku

poleca83%

matematyka

HISTORIA MATEMATYKI - WIEK XIX Charakterystyka epoki: • Rewolucja francuska i okres napoleoński stworzyły korzystne warunki dla rewolucji przemysłowej w Europie, co wzmogło uprawianie nauk fizycznych, a tym samym prawie idealne...

poleca84%

Twierdzenie Pitagorasa

PITAGORAS z SAMOS, żył w latach 570-496 p.n.e. Pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Trudno jest stwierdzić co dokonał sam Pitagoras, a co jego uczniowie, więc raczej należy mówić o...

poleca81%

Złote myśli związane z matematyką

"Między duchem a materią pośredniczy matematyka" HUGO STEINHAUS -------------------------------------------------------------------------------- "Oprócz matematyki nie istnieje żadna niezawodna wiedza z wyjątkiem tej, która wywodzi się z...

poleca82%

Permutacje

Permutacją z powtórzeniami zbioru k elementowego nazywamy ciąg, w którym pewne elementy powtarzają się n1, n2, ..., nk razy. Liczba n elementowych permutacji wyraża się wzorem

poleca83%

Funkcja trygonometryczna sinus

Definicja: Stosunek długości przyprostokątnej w trójkącie prostokątnym, leżącej naprzeciw kata α do długości przeciwprostokątnej w tym trójkącie. Kat α, to kąt do którego odnosi się funkcja sin. Przeciwprostokątna jest zawsze najdłuższa w...

poleca82%

Szereg geometryczny.

Definicja. Jeżeli jest ciągiem geometrycznym, to ciąg określony wzorem: nazywamy szeregiem geometrycznym lub ciągiem sum częściowych ciągu . Definicja: Jeżeli szereg jest zbieżny do skończonej granicy, to tą granicę nazywamy sumą...