profil

Ogniwo galwaniczne (korozyjne), korozja metali (ogólnie)

Ostatnia aktualizacja: 2022-06-21
poleca 85% 1257 głosów

Treść
Grafika
Filmy
Komentarze

Korozja metali


Korozją nazywa się stopniowe niszczenie tworzywa pod wpływem chemicznego oddziaływania środowiska. W przypadku metali rozróżnia się korozję chemiczną i elektrochemiczną. Korozja chemiczna jest spowodowana oddziaływaniem suchych gazów lub cieczy nieprzewodzących prądu elektrycznego, zaś korozja elektrochemiczna jest spowodowana oddziaływaniem na metal roztworów przewodzących (elektrolitów). Straty wywołane korozją, np. w USA w 1969 roku wyniosły 5 miliardów dolarów a jedna osoba, spośród 4-5 zatrudnionych w przemyśle stalowym, pracuje aby uzupełnić ubytki żelaza spowodowane korozją (ok. 20% rocznej produkcji).

Biorąc pod uwagę skutki zniszczenia metalu rozróżnia się korozję równomierną, miejscową i międzykrystaliczną. Korozja równomierna jest najmniej niebezpieczna, wpływa na obniżenie wytrzymałości konstrukcji tylko na zasadzie zmniejszenia przekroju poprzecznego przedmiotu a nie obniża wytrzymałości materiału. Korozja miejscowa objawia się plamami czy wżerami o znacznej głębokości i wpływa silnie na zmniejszenie wytrzymałości zarówno materiału jak i konstrukcji.

Najgroźniejsza jest korozja międzykrystaliczna, powodująca zniszczenia na granicach ziarn postępujące w głąb takich materiałów jak stopy glinu czy austeniczne stale żaroodporne. W wielu przypadkach ten typ korozji powodującej silne obniżenie wytrzymałości, jest trudny do zauważenia na powierzchni metalu.

Co to jest rdza? Nie jest to określona substancja, jak np. tlenki żelaza: Fe2O3 lub Fe3O4, lecz dość nieokreślone połączenie związków żelaza, tlenu i wodoru. Główny składnik rdzy stanowi związek o wzorze sumarycznym FeO(OH), będący równocześnie tlenkiem i wodorotlenkiem żelaza, i zawierający żelazo na stopniu utlenienia +3. Oprócz tego w skład rdzy wchodzi woda, tlenki lub wodorotlenki żelaza o nieco innym składzie, a także trochę węglanów żelaza.

Mechanizm i przyczyny korozji.


Aby skutecznie przeciwdziałać korozji, należy dokładnie poznać jej mechanizm i przyczyny. Codzienna obserwacja naszego otoczenia wystarcza do stwierdzenia, że żelazo nie rdzewieje w obecności wody oraz nie rdzewieje w obecności tlenu. Oprócz wody i tlenu czynnikiem wybitnie przyspieszającym rdzewienie żelaza są jony wodorowe. Obserwacje te pozwalają na ułożenie przypuszczalnego mechanizmu procesu rdzewienia. W pierwszym etapie powierzchnia żelaza ulega pod wpływem wody częściowemu zjonizowaniu:
Fe Fe2+ + 2e

Jony wodorowe wychwytują elektrony przesuwając reakcję w prawo
2e + 2H+ H2

Ponieważ wodór gazowy nie wydziela się w procesie rdzewienia a w warunkach beztlenowych korozja nie występuje, należy przyjąć, że atomy wodoru wchodzą w reakcje z tlenem, przesuwając obie reakcje w prawo
H2 + O2 H2O

Rodzaje korozji

Korozja elektromechaniczna.


Powstaje na skutek działania krótkozwartych ogniw na styku metalu z elektrolitem. Ogniwa te powstają na skutek niejednorodności chemicznej lub fizycznej fazy metalicznej (styk różnych metali, niejednorodność różnych faz krystalicznych stopu, wtrącania faz obcych, lokalne różnice naprężeń odkształceń i stanu gładkości powierzchni) albo na skutek różnic w stężeniu elektrolitu.

Produkty reakcji elektrochemicznych biegnących na elektrodach takiego lokalnego ogniwa mogą blokować dalszy postęp procesu, co objawia się obniżeniem potencjału katody lub podwyższeniem potencjału anody, tzw. polaryzacją elektrod. Oczywiście polaryzacja katodowa czy anodowa wpływa hamująco na proces korozji i odwrotnie.
Przyczyną korozji elektrochemicznej mogą też być prądy błądzące np. prąd stały z szyn trakcji elektrycznej. Jest to korozja biegnąca na zasadzie anodowego rozpuszczania metali w procesie elektrolizy, w którym rolę elektrolitu spełniają roztwory wodne soli zawartych w glebie, zaś rolę elektrod rurociągi, kable i konstrukcje żelbetowe zakopane w ziemi.

Korozja chemiczna.


Korozyjne działanie suchych gazów jest szczególnie intensywne w podwyższonych temperaturach. Na przykład wodór powoduje "chorobę wodorową miedzi", gdy wnika do metalu zawierającego zanieczyszczenia tlenowe np. Cu2O. Wytworzona w trakcie redukcji para wodna dąży do wydobycia się z metalu i wywołuje pęknięcia.
Dwutlenek siarki i siarkowodór atakują m.in. srebro, miedź i nikiel. Powietrze i gazy spalinowe mogą wywołać odwęglanie stali i jej utlenienie. Wytworzona na powierzchni warstewka tlenku może chronić głębsze warstwy metalu przed korozją o ile jest dostatecznie zwarta i gruba. Dzieje się tak w trakcie utleniania, np. glinu, cynku, niklu, miedzi, chromu i żelaza. Trwałość warstewki ochronnej pasywującej zmniejszają naprężenia mechaniczne oraz jej zła spójność z metalem wynikła z różnic objętości molowej tlenku i objętości molowej metalu. Duży wpływ na postęp utleniania metalu ma szybkość dyfuzji atomów metalu poprzez warstewkę tlenku do powierzchni zewnętrznej i dyfuzja tlenu do powierzchni metalu.

Korozja lokalna.


Jeżeli korozja metalu w środowisku wodnym zachodzi nierównomiernie, to obszary katodowe i anodowe występujących ogniw korozyjnych można wyróżnić bądź gołym okiem, bądź pod mikroskopem.

Korozja ogólna.


Przy bardzo małych rozmiarach ogniw metal ulega korozji równomiernej, w której na całej powierzchni występują miejsca anodowe i katodowe zmieniając w czasie swoje położenie. Jeżeli produkty korozji nie przechodzą do roztworu, to wydzielają się równomierne na całej powierzchni metalu. Korozja elektrochemiczna ogólna prowadzi do zniszczeń równomiernych. Potencjał katody jest równomierny potencjałowi anody i dalej potencjałowi korozyjnemu. Korozję elektrochemiczną lokalną charakteryzują anody oddzielone od katod. Powierzchnia anody jest przy tym dużo mniejsza od powierzchni katody, a potencjał anody - niższy od potencjału katodowego. Produkty korozji nie chronią przed dalszą korozją, po przekroczeniu iloczynu rozpuszczalności wytrącają się i odkładają pomiędzy anodą i katodą.

Korozja z depolaryzacją wodorową.


Ten typ korozji zachodzi przede wszystkim w kwasach, a w przypadku niektórych metali - również w roztworach silnie alkalicznych. Szybkość wydzielania wodoru, a w efekcie i korozji metalu może zależeć od procesu katodowego lub anodowego. Korozję metali w środowiskach kwaśnych charakteryzuje, zarówno w procesie katodowym jak i anodowym, występowanie polaryzacji aktywacyjnej. Cynk jest przykładem metalu, który charakteryzuje się małą polaryzacją aktywacyjną rozpuszczania a wysokim nadnapięciem wydzielanego na nim wodoru. Zanieczyszczenia cynku miedzią czy żelazem zmniejszają polaryzację katodową cynku i powodują zwiększenie szybkości korozji. O przebiegu korozji metali łatwo pasywujących się w rozcieńczonych kwasach decydują najczęściej procesy anodowe. Wzrost stężenia utleniacza w roztworze zwiększa polaryzację anodową, a z kolei obecność silnych depasywatorów zmniejsza polaryzację anodową. Obok dominującej funkcji procesów katodowych może mieć miejsce jednakowe ich działanie. Oznacza to, że w procesie korozyjnym występuje jednakowa polaryzacja katodowa i anodowa. Stal węglowa koroduje z większą szybkością niż czyste żelazo. Obecność w nim siarki zwiększa jeszcze szybkość korozji.

Korozja z depolaryzacją tlenową.


Korozja metali w wodzie i roztworach obojętnych jest bardziej powszechna niż w środowiskach kwaśnych. W procesie anodowym występuje polaryzacja aktywacyjna, w procesie katodowym redukcji tlenu występuje polaryzacja stężeniowa związana z ograniczoną rozpuszczalnością tlenu w środowisku wodnym. O szybkości procesu korozji będzie decydować graniczna gęstość prądu katodowej redukcji tlenu, która zależy od stężenia tlenu. Szybkość ogólnej korozji różnych stali w wodzie jest uzależniona od szybkości dyfuzji tlenu do ich powierzchni. Wielkość polaryzacji anodowej w pewnym zakresie nie ma znaczenia, decyduje wielkość prądu granicznego redukcji tlenu.

Korozja atmosferyczna.


Korozja atmosferyczna jest przykładem korozji elektrochemicznej. Szybkość jej jest uzależniona od zawartości wilgoci oraz zanieczyszczeń w powietrzu i na metalu. Przyjmuje się, że zjawisko korozji atmosferycznej ma miejsce w atmosferze o wilgotności względnej powyżej 70%, gdyż wtedy może nastąpić kondensacja pary wodnej na powierzchni metalu. Duże znaczenie ma również strefa klimatyczna, a także mikroklimat występujący w obrębie tych stref. Korozję atmosferyczną przyspieszają zanieczyszczenia atmosfery, np. SO2, które zwiększa ją przewodnictwo skondensowanej na powierzchni metalu pary wodnej. Dalszym czynnikiem przyspieszającym korozję są zanieczyszczenia stałe osadzające się na metalu, a szczególnie sadze i pył węglowy, które intensyfikują proces katodowej redukcji tlenu.

Korozja galwaniczna.


Korozja ta jest wywołana kontaktem dwóch metali czy stopów o różnych potencjałach, powodującym wytworzenie się ogniwa galwanicznego. Różnica potencjałów w szeregu galwanicznym, mniejsza niż 50 mV, nie ma praktycznie znaczenia. Efektywność ogniwa zwiększa się ze wzrostem różnicy potencjału stykających się z sobą metali w środowisku korozyjnym. Przykładem tego rodzaju korozji może być korozja stali węglowej znajdującej się w kontakcie ze stalą chromowo-niklową, miedzi lub mosiądzu ze stałą zwykłą lub ocynkowaną, która po rozpuszczeniu cynku będzie ulegała korozji. W przypadku metali silnie pasywujących się, mimo znacznych różnic potencjałów, efekty korozyjne mogą być niewielkie, bowiem warstewki pasywne mogą dobrze chronić przed korozją. W praktyce w celu zmniejszenia efektu galwanicznego w przypadku konieczności łączenia metali czy stopów należy przestrzegać, żeby różnica potencjałów była jak najmniejsza i tak dobierać metale, żeby metal stanowiący katodę w ogniwie galwanicznym miał małą powierzchnię, a metal anody dużą. Pozwoli to rozłożyć efekt korozyjny na dużej powierzchni i w ten sposób zmniejszyć jej szkodliwość. Dlatego śruby, nakrętki, spawy powinny być w takich przypadkach wykonane z bardziej szlachetnego materiału niż materiał blach czy konstrukcji. Korozja galwaniczna jest groźniejsza w roztworach o małym przewodnictwie, np. w miękkich wodach, ponieważ atak korozyjny koncentruje się blisko złącza metali. Korozja galwaniczna może być wywołana nie tylko obecnością wspomnianych makroogniw, lecz także i takich mikroogniw, które występują w obrębie jednego kawałka metalu. Przykładem tego rodzaju korozji może być selektywna korozja stopów, polegająca na rozpuszczaniu się składnika mniej szlachetnego, np. cynku w mosiądzu. Dalszym przykładem korozji galwanicznej wywołanej obecnością mikroogniw jest selektywna korozja żeliwa szarego w wodzie lub glebie, prowadząca do przemiany żelaza w rdzę, w której pozostaje rozrzucony grafit.

Korozja naprężeniowa.


Która zachodzi w przypadku współdziałania czynników elektrochemicznych z naprężeniami mechanicznymi. Korozja tego typu, związana z dyslokacjami w metalu, może objawiać się jako pękanie międzykrystaliczne lub śródkrystaliczne.

Korozja zmęczeniowa.


Zachodząca przy cyklicznych naprężeniach metalu w środowisku agresywnym, objawiająca się pękaniem określonych miejsc konstrukcji, zwłaszcza w kotłach parowych i środowisku wody morskiej.

Korozja cierna.


Zachodząca na powierzchniach granicznych dwu ściśle dopasowanych płaszczyzn metali, które ulegają drganiom lub przesunięciom oscylacyjnym.

Korozja kawitacyjna.


Spowodowana powstawaniem luk próżniowych w cieczach wskutek szybkiego ruchu lub wibracji (śruby okrętowe, wirniki turbin hydraulicznych itp.)

Kruchość wodorowa.


Występująca w stalach niskostopowych o dużej wytrzymałości z powodu wnikania wodoru do stali w czasie np. trawienia lub powlekania galwanicznego.

Korozja szczelinowa.


Która objawia się w szczelinie między metalami o niedostatecznym dostępie powietrza i tlenu, co uniemożliwia samoodnawianie się warstewki tlenkowej na stali i stopach aluminium.

Korozja kontaktowa.


Zachodząca na styku dwóch metali o różnych potencjałach w roztworze.

Korozja selektywna.


Spowodowana lokalnym zubożeniem stopu w chrom przez jego związanie w węgliki i wydzielanie na granicy ziarn metalu.

Korozja wżerowa (pitting).


Występująca szczególnie w środowisku chlorków, powodująca głębokie wżery w metalu.

Korozja wysokotemperaturowa (gazowa).


Która jest chemicznym procesem utleniania metali w różnego typu spalinach lub środowiskach zawierających siarkę, siarkowodór lub chlorowce. Objawia się ona zniszczeniem metalu i zmianą wytrzymałości mechanicznej.

Korozja katastrofalna.


Która jest skrajnym przypadkiem korozji wysokotemperaturowej, gdy proces zniszczenia metalu zachodzi szybko.

Korozja kwasowa.


Gdy w tworzywo nieorganiczne wnika ośrodek o pH niższym od 7 i działa chemicznie na materiał.

Korozja siarczanowa.


W czasie której siarczany środowiska działają na związki zawarte w cemencie portlandzkim, powodując powstanie soli Candlota o dużej objętości właściwej, rozsadzającej strukturę betonu.

Pęcznienie.


Dotyczące tworzyw organicznych, plastyków, których stosunkowo luźna struktura umożliwia wnikanie w głąb materiału obcych atomów powodujących pęcznienie i pogorszenie własności mechanicznych.

Solwatacja.


Zachodząca również w odniesieniu do plastyków, w których w przypadku chemicznego reagowania cząsteczek tworzywa z penetrującymi cząsteczkami środowiska może zachodzić destrukcja objawiająca się formowaniem kompleksów - solwatów - lub utlenianiem tworzywa.

Ochrona metali przed korozją.


Ze względu na ogromne straty, jakie ponosi gospodarka wskutek korozji, opracowano wiele metod zapobiegania a przynajmniej hamowania tego niepożądanego zjawiska. Do najważniejszych metod ochrony antykorozyjnej można zaliczyć:
- elektrochemiczną ochronę katodową i protektorową
- metaliczne i niemetaliczne powłoki ochronne
- dyfuzyjne ulepszanie powierzchni metali
- stosowanie inhibitorów

Ochrona katodowa polega na podłączeniu do elementów konstrukcji narażonych na korozję ujemnego bieguna źródła prądu stałego o niewielkim napięciu (1-2 V). Anodą może być złom żelazny lub nierozpuszczalna elektroda grafitowa.

Znacznie częściej stosuje się elektrochemiczną ochronę protektorową, polegającą na połączeniu metalu chronionego, np. żelaza, z blokiem metalu mniej szlachetnego. Jeżeli oba metale znajdują się w tym samym elektrolicie, powstaje krótkozwarte ogniwo, w którym bardziej aktywny magnez lub cynk spełnia rolę anody, a żelazo - katody. Bloki magnezu przytwierdza się w pewnych odstępach do rurociągów podziemnych lub do stalowych kadłubów okrętów, chroniąc je w ten sposób przed korozją. Chociaż zużyte anody magnezowe co pewien czas muszą być wymieniane, jest to prostszy zabieg, niż stałe zasilanie prądem chronionych elementów, jak to ma miejsce przy ochronie katodowej.

Powłoki z metalu mniej szlachetnego od żelaza oprócz izolacji od tlenu i wilgoci zapewniają równocześnie ochronę protektorową. Nawet w przypadku poważnego uszkodzenia powłoki cynkowej naniesionej na znajdującą się pod nią stal, ta ostatnia będzie katodą i jej podatność na korozję będzie w znacznym stopniu ograniczona.

Zupełnie inaczej wygląda sprawa, gdy metalowa powłoka jest bardziej szlachetna niż pokryty nią metal. Ochronne działanie np. powłoki miedziowej, cynkowej czy niklowej naniesionej galwanicznie na żelazo jest tak długo skuteczne, jak długo powłoka jest szczelna. Z chwilą jej uszkodzenia, w obecności wilgoci i zanieczyszczeń proces korozji żelaza jest intensywniejszy niż bez powłoki. Miedź, cyna czy nikiel stają się katoda, a żelazo ulega anodowemu rozpuszczaniu: Fe = Fe2+ + 2e. Stan równowagi reakcji przesuwa się w prawo wskutek zużywania elektronów w reakcji redukcji wodoru w elektrolicie kwaśnym lub redukcji tlenu (O2 + H2O + 4e = 4OH-) w elektrolicie obojętnym lub zasadowym.
Zadaniem powłok niemetalicznych jest izolowanie powierzchni metalu od dostępu tlenu i wilgoci. Używane w tym celu farby i lakiery oprócz ochrony przed korozją służą zarazem do dekoracji powierzchni. Inną metodą uzyskania trwałej, szczelnej i dobrze przylegającej powłoki jest utlenianie (pasywacja) powierzchni metali. Niektóre metale, np. aluminium, samorzutnie pokrywają się na powietrzu zwartą warstwą tlenku, który chroni metal przed dalszą korozją. Utleniając metal anodowo w odpowiednim elektrolicie można uzyskać grubszą i lepiej chroniącą warstwę tlenkową.

Najnowszą metodą ochrony metali jest wytwarzanie tzw. powierzchni stopowych. Proces przypomina w pewnym stopniu elektrolityczne (galwaniczne) powlekanie metali, ale zamiast wody używa się jako rozpuszczalnika fluorków metali alkalicznych i metali ziem alkalicznych z dodatkiem ok. 1% fluorku metalu tworzącego powierzchnię stopową. Istotą procesu jest dyfuzja atomów metalu stanowiącego anodę w głąb powierzchni drugiego metalu będącego katodą. W stopionej soli fluorkowej o temp. 800-1600 K powstaje stop powierzchniowy o grubości 25 do kilkuset mikrometrów. Dotychczas uzyskano ponad 500 różnych powierzchni stopowych. Można dla przykładu przytoczyć odporne na korozje dyfuzyjne powłoki berylowe na miedzi, tytanie, niklu, kobalcie, żelazie, i innych metalach. Powłoki tytanu na miękkich stalach oraz stopach niklowych i miedziowych zwiększają odporność na działanie kwasów. Równie korzystne okazało się aluminiowanie w stopionych fluorkach. Metoda wytwarzania powierzchni stopowych nie ogranicza się do samych metali. Uzyskano np. twarde i błyszczące powierzchnie krzemowe na platynie.

Innym sposobem hamowania procesu korozji jest wykorzystanie tzw. inhibitorów, czyli substancji silnie adsorbujących się na powierzchni metalu i blokujących w ten sposób dostęp jonów wodorowych. Właściwości inhibitujące wykazują substancje powierzchniowo aktywne, wielkocząsteczkowe, związki tworzące nierozpuszczalne osady z jonami metalu a także inne związki zawierające azot i siarkę. Na przykład dodatek 0,05% siarczku dwufenyloetanu zmniejsza o 75% ubytek żelaza w kwasie solnym. Zamiast stosowanego dawniej natłuszczania obecnie konserwuje się i transportuje cenne i precyzyjne urządzenia metalowe w szczelnych opakowaniach z folii polietylenowej zawierających wewnątrz minimalną ilość łatwo lotnych inhibitorów. Również dodatek inhibitorów do farb i lakierów wybitnie polepsza ich właściwości antykorozyjne.

Czy tekst był przydatny? Tak Nie
Komentarze (2) Brak komentarzy

praca spoko.... tylko jak dla mnie trochę za długawa... szukałem raczej czegoś krótszego... ale ogólnie może być...

a więc - jestem pierwsza ;P

dłuuugie to ;/

Treść zweryfikowana i sprawdzona

Czas czytania: 15 minut