profil

Prace i prawa Mendla

poleca 85% 1001 głosów

Treść
Grafika
Filmy
Komentarze

Dziedziczenie cech intrygowało ludzkość już w zamierzchłych czasach. Bogactwo otaczającego ich życia zmuszało ich do zastanawiania się: dlaczego to wszystko tak się dzieje? W przeszłości nasi przodkowie nie tylko dziwili się, ale i eksperymentowali wykorzystując dziedziczenie dla własnych celów. Spadkiem tych eksperymentów, jaki otrzymaliśmy, są udomowione rośliny i zwierzęta, które do dziś stanowią dla nas podstawę wyżywienia i wytwarzania odzieży, a nawet zwykłe drożdże używane do produkcji chleba, wina i piwa. W tym dziedzictwie pozostawionym po naszych starożytnych przodkach odnajdujemy początki badań w dziedzinie zwanej dzisiaj genetyką. Z historycznego punktu widzenia, ogromna różnorodność form życia przeszkadzała w odkryciu ogólnych praw biologii. (Niełatwo dostrzec związki łączące drzewo i konia.) Wielkie idee dojrzewały powoli, bywało, że o niektórych dobrych pomysłach zapominano, aby odkryć je ponownie setki lat później. W V wieku p.n.e. greccy filozofowie, pomimo silnej presji kulturowej, aby potwierdzić dominację mężczyzn, doszli do wniosku, który dziś wydaje się oczywisty, że obie płcie muszą mieć udział w formowaniu nowego życia, ponieważ potomstwo jest podobne do obojga rodziców. Wierzyli również, że ów udział jest rodzajem informacji zebranej z części dojrzałych osobników. Demokryt dowodził, że informacja jest przenoszona w postaci cząstek, których kształt, wielkość i wzajemne ułożenie wpływają na cechy potomstwa. Jednak nie wszyscy ten pogląd podzielali. Teofrast, uczeń Arystotelesa, jako pierwszy dostrzegł podobieństwa między rozmnażaniem się zwierząt i roślin i zaproponował, by pojęcia osobnik: męski i żeński, używać na określenie uczestników rozmnażania płciowego. Poważne prawdziwe badania genetyczne rozpoczęły się w XIX wieku. Badano dziedziczenie zmiennych cech, widocznych na pierwszy rzut oka, na przykład koloru kwiatów groszku czy ludzkich oczu. W wyniku tych badań powstało abstrakcyjne pojęcie niepodzielnego genu jako podstawowej jednostki dziedziczenia. Przypuszczano, że jeden z genów determinuje barwę kwiatu groszku, inny wysokość całej rośliny i tak dalej. Natura genu oraz sposób, w jaki decyduje o określonych cechach, pozostawały całkowicie nie znane. To właśnie na początku XIX wieku, dzięki udoskonaleniu mikroskopów pojęcie komórki stało się podstawą jednego z najważniejszych uniwersalnych praw dotyczących istot żywych. Wszystkie organizmy żyją albo jako pojedyncze komórki, mnożące się niezależnie w swoim środowisku, albo jako zbiorowiska komórek. Bakterie to pojedyncze komórki i podczas wzrostu w zasadzie każda komórka może funkcjonować niezależnie od innych. Natomiast rośliny i zwierzęta, jako organizmy złożone z bilionów komórek o rozmaitych rozmiarach i kształtach. W takich organizmach odmienne typy komórek pełnią odmienne funkcje. Często komórki określonego rodzaju łączą się w bardziej złożone struktury, takie jak tkanki, które z kolei tworzą wątrobę, mózg albo liść. Tkanki pełnią specyficzne funkcje, określone właściwościami komórek wchodzących w ich skład. Jednym z ważniejszych osiągnięć biologii XIX wieku było wykazanie, że nowe komórki powstają jedynie przez podział komórek już istniejących. Po sformułowaniu teorii komórkowej podjęto trzy kierunki badań istot żywych: analizę statystyczną dziedziczenia się pojedynczych cech, badania struktury i własności chromosomów oraz badania związków chemicznych wchodzących w skład jądra i cytoplazmy. Te trzy rozwijające się równolegle nurty legły u podstaw ważnych i niezależnych dyscyplin naukowych, zanim w połowie obecnego stulecia połączyły się w jedną – genetykę. Na początku XIX wieku biolodzy zauważyli wewnątrz jąder komórek roślin i zwierząt małe struktury. Nazwali je chromosomami (od greckiego chromo – barwa; soma – ciało), ponieważ struktury te szczególnie dobrze barwiły się pewnymi substancjami stosowanymi podczas przygotowywania komórek do badań mikroskopowych. W drugiej połowie XIX wieku biolodzy szczegółowo poznali kształt i zachowanie chromosomów. Okazało się, że wszystkie komórki, z wyjątkiem komórek jajowych i plemników, organizmu danego gatunku zawierają zawsze taką samą, charakterystyczną liczbę chromosomów. Na przykład, pewien gatunek muszki owocowej ma osiem chromosomów, podczas gdy ludzie i nietoperze – po 46, kukurydza – 20, a nosorożec – 84. Dzieje się tak, mimo że poszczególne komórki różnią się całkowicie budową i funkcją. Chromosomy można pogrupować w pary ze względu na podobny kształt: cztery pary u muszki owocowej, 23 pary u ludzi i tak dalej. Dwa podobne składniki pary określa się mianem homologicznych względem siebie. Badania mikroskopowe chromosomów w martwych wybarwionych komórkach dają statyczny obraz ich zachowania. Można było jednak ułożyć takie obrazy w sekwencję zdarzeń. Oglądane w kolejności obrazy pokazują, jak w czasie gdy komórka przygotowuje się do podziału zmieniają się chromosomy. Stało się jasne, że podczas podziału komórkowego tworzy się duplikat każdego chromosomu, co daje w rezultacie podwojenie ich liczby. Cały proces podziału chromosomowego nazywany jest mitozą. Wydarzenia następujące od początku jednego podziału komórkowego do następnego określa się mianem cyklu komórkowego. Aby analiza struktury chromosomów powiodła się, trzeba wybrać odpowiedni organizm doświadczalny. Na początku ulubionym układem eksperymentalnym badaczy były bardzo grube pary chromosomów z gruczołów śliniankowych muszki owocowej. Z systematyczną analizą chromosomów ludzkich i innych małych chromosomów ssaków trzeba było czekać aż do drugiej połowy naszego stulecia. Nawet obecnie małe i rozmyte chromosomy takich prostych organizmów jak drożdże i pierwotniaki nie są możliwe do analizy pod mikroskopem świetlnym.
Koncepcja genu narodziła się dzięki pracom Grzegorza Johanna Mendla w latach sześćdziesiątych XIX wieku, choć sam termin powstał dopiero po powtórzeniu i uzupełnieniu jego odkryć na początku naszego stulecia. W 1900 nastąpił rozwój genetyki jako oddzielnej dziedziny wiedzy. Powtórne odkrycie praw Mendla. Nastąpiło to równocześnie i przez Karola Eryka Corrensa, Eryka Edlera von Saysenegg Tschermak oraz Hansa Vredemanna de Vries, wszyscy pracowali nad tymi samymi zagadnieniami lecz swoje prace prowadzili oddzielnie. W 1909 wprowadzono podstawowe pojęć genetyczne jak: gen, genotyp, fenotyp. Dokonał tego Wilhelma Luisa Johannsena. Słowo „gen” wprowadzono na określenie abstrakcyjnej jednostki dziedziczenia, odpowiedzialnej za jakąś cechę danego gatunku. Prowadzona przez wiele pokoleń analiza statystyczna dziedziczenia się prostych cech w populacjach potwierdziła koncepcję genu. W swoich badaniach Mendel badał długość pędów, kolor kwiatów oraz kolor i kształt nasion groszku pachnącego. Tak więc kolor kwiatów lub nasion rozumiano jako rozróżnialne, dziedziczne cechy, nie znając procesów chemicznych i nie wiedząc nic o sposobie, w jaki geny determinują kolor. Fascynujące jest to, iż koncepcja Mendla i jego następców jest całkowicie zgodna z dzisiejszym rozumieniem chemicznej struktury genu i sposobu, w jaki określa ona cechy organizmu.
Grzegorz Mendel(1822 - 84) był mnichem austriackim. W swoich eksperymentach używał groszku pachnącego z trzech powodów. Po pierwsze, ta roślina wytwarza wiele cech, różnych u innych odmian groszku, Mendel mógł je łatwo obserwować, po drugie, groszek może być łatwo ze sobą krzyżowany zapylany, po trzecie: groszek produkuje stosunkowo dużą ilość nasion. Podstawą założenia Mendla, które sobie postawił w trakcie badań jest to, iż każda cecha w organizmie musi być „zapisana" w jakichś materialnych czynnikach. Te czynniki są przekazywane potomstwu w procesie rozmnażania. W swoich doświadczeniach Mendel obserwował dziedziczność jednej cechy u roślin groszku pachnącego, np.:. nad wysokością roślin, kolorem kwiatów, kolorem i kształtem nasion. Opisałem eksperyment z wysokością rośliny, bo go nie przerabialiśmy w szkole. Najpierw Mendel rozmnażał wysoką odmianę groszku (wysokość roślin wynosiła około 2 metry. Będę nazywać ją rośliny TT, co oznacza dwa geny kodujące wysokość 2 metry. Mendel zauważył, że tylko wysokie rośliny powstawały w wyniku rozmnażania. Doszedł więc do wniosku, że te rośliny muszą zawierać jakiś czynnik zapisujący wysokość 2 metry. Następnie Mendel rozmnażał niską odmianę groszku (wysokość roślin wynosiła około 30 centymetrów. Będę nazywać te rośliny tt. W każdej generacji roślin były tylko niskie rośliny o wysokości 30 centymetrów. W następnym kroku Mendel skrzyżował odmianę wysokiego groszku (TT) z odmianą niskiego groszku (tt). W rezultacie powstawały tylko rośliny wysokie, różniące się od odmiany wysokich tym, że miały geny kodujące wysokość i 2 metry, i 30 centymetrów - genotyp Tt. Potem skrzyżował groszek Tt i otrzymał trzy roślin o wysokości 2 metry i jedną 30 centymetrów.
Dla ułatwienia Mendel nazwał każdą generację:
Początkową generację nazwał: generacją P (parent, ang. rodzice)
Następne generacje nazwał: generacją F1 (first filial, ang. pierwsze potomne),
generacją F2 (second filial, and. drugie potomne).
Wynikiem eksperymentu były:
generacja P - skrzyżowane zostały rośliny z odmiany wysokiej z roślinami z odmianą niską
generacja F1 - tylko wysokie rośliny urosły
generacja F2 - trzy czwarte roślin było wysokich, jedna czwarta niskich

Wnioski jakie wyciągną Mendla są znane jako prawa Mendla:
1) Pierwsze prawo Mendla - prawo segregacji:
Płciowo rozmnażające się organizmy mają po dwa allele każdego genu. Podczas formowania gamet w procesie mejozy, allele umieszczone na chromosomach homologicznych (tak się nazywają chromosomy występujące parami) są oddzielane od siebie. Każdy gatunek organizmów eukariotycznych ma konkretną, liczbę par chromosomów. Podczas formowania gamet następuje rozdzielenie tych chromosomów - do każdej gamety idzie tylko połowa informacji genetycznej, z każdej pary chromosomów tylko jeden znajduje się w gamecie.

Chromosomy muszki owocowej
2) Drugie prawo Mendla - prawo niezależnej segregacji cech:
Kiedy gamety są produkowane, allele każdego genu są przekazywane oddzielnie. Znaczy to, że wszystkie cechy są dziedziczone niezależnie.

Jednak z czasem okazało się, iż nie wszystkie obserwacje mendla są słuszne i naukowcy opisali listę zastrzeżeń do prawa Mendla. Dotyczyły one niezupełna dominacji, która jest zjawiskiem bardzo podobnym do współdominacji. Oznacza to, że heterozygoty różnią się od homozygot. Organizm będący heterozygotą wykazuje w swoim fenotypie nie tylko cechy genu dominującego, można zauważyć także cechy genu recesywnego. Łatwiej będzie zrozumieć to zjawisko na podstawie rysunku znajdującego się poniżej. Na rysunku przedstawione są kwiaty wyżlinu, czyli inaczej lwiej paszczy. W generacji P kwiaty mają kolor czerwony (genotyp RR) i biały (genotyp rr). W generacji F1 wszystkie kwiaty mają kolor różowy. W generacji F2 jedna czwarta kwiatów ma kolor czerwony, dwie czwarte różowy i jedna czarta biały. W tym przypadku stosunki genotypów i fenotypów nie różnią się. Więc współdominacja jest szczególnym przypadkiem dominacji niezupełnej. Nie ma formy allelu dominującego ani recesywnego, gdyż istniejące allele są, właśnie „współdominujące". W tym wypadku działanie obydwu alleli jest takie same. Dobrym przykładem współdominacji są grupy krwi. Osoba z grupą krwi AB ma allele IA oraz IB, które są współdominujące. Grupa krwi AB będzie miała cechy grupy A oraz grupy B. Kolejnym zastrzeżeniem jest to, iż liczba alleli może być większa od dwóch: Allel jest możliwą formą genu. Mendel sądził, że mogą być tylko dwa allele, jednak stwierdzono, że alleli może być dużo więcej: trzy allele, cztery, pięć a nawet sześć! Żeby móc zrozumieć to zjawisko, trzeba pamiętać, że w jednym organizmie mogą być najwyżej dwa allele. Wyjątek stanowi organizmy, które mają zamiast par chromosomów czwórki chromosomów, szóstki chromosomów lub jeszcze więcej. Człowiek i większość organizmów eukariotycznych ma w normalnych komórkach 2n informacji genetycznej, a w komórkach rozrodczych 1n. Jednak są organizmy mające 4n, 6n, lub więcej n informacji genetycznej.
Przy obecnym postępie genetyki jedynie pierwsze prawo Mendla nadal obowiązuje. Do drugiego prawa Mendla jest zbyt dużo zastrzeżeń, by uznać je nadal za obowiązujące. Drugie prawo Mendla mówi, że wszystkie geny dziedziczą się niezależnie. Jednak geny dziedziczą się niezależnie tylko gdy leżą na oddzielnych chromosomach. Geny leżące na jednym chromosomie dziedziczą się wspólnie. Takie geny (dziedziczące się wspólnie ) nazywamy genami sprzężonymi. Odchylenia od prawa Mendla zostały wyjaśnione przez Thomasza Hunt Morgana i jego Chromosomową Teorie Dziedziczności.

Podoba się? Tak Nie
Sprawdzone hasła:

Czas czytania: 10 minut