profil

Zastosowanie izotopów promieniotwórczych

poleca 85% 114 głosów

Treść
Grafika
Filmy
Komentarze


Reaktory jądrowe wytwarzają olbrzymie ilości izotopów promieniotwórczych. Izotopy promieniotwórcze powstają z nuklidów nie radioaktywnych poddanych głównie działaniu neutronów, które wnikając do jąder atomowych tworzą nowe jądra tego samego lub innego pierwiastka. Nuklidy promieniotwórcze wytwarzane sztucznie znalazły najróżnorodniejsze zastosowanie, szczególnie jako źródła promieniowania jonizującego, wskaźniki izotopowe i generatory energii wydzielonej w czasie rozpadu promieniotwórczego.

Zastosowanie izotopów promieniotwórczych


Pierwiastek Izotop Wykorzystywane
promieniowanie Czas półrozpadu (T1/2) Zastosowanie
Ameryk 241Am alfa 432,7 lat czujniki dymu
(instalacje przeciwpożarowe)
Cez 137Cs gamma 30 lat radiografia przemysłowa,
bomba cezowa, pomiary grubości
Iryd 192Ir gamma 73,8 lat radiografia przemysłowa
Jod 131I gamma 8 dni badanie tarczycy (medycyna)
Kobalt 60Co gamma 5,3 lat bomba kobaltowa (medycyna),
radiografia przemysłowa, urządzenia
radiacyjne, waga izotopowa, sprzęt
do pomiaru: grubości, poziomu
cieczy w zbiornikach.
Pluton 238Pu alfa 87,7 lat stymulatory serca,czujniki dymu
Pluton 239Pu alfa 24000 lat czujniki dymu
Rad 226Ra gamma 1600 lat aplikatory radowe
Tal 204Tl beta 3,8 lat sprzęt do pomiaru grubości
Wodór 3H beta 12,3 lat farby świecące



Zastosowanie izotopów promieniotwórczych

Większość pierwiastków chemicznych występuje w postaci dwu lub większej liczbie typów atomów, różniących się między sobą liczbą atomów w jądrze. Wyróżniamy np. trzy typy atomów wodoru (H), pięć typów atomów węgla (C) oraz 16 typów ołowiu (Pb) .Te różne typy atomów jednego i tego samego pierwiastka nazywane są IZOTOPAMI (isos = równy, topos = miejsce), ponieważ zajmują one to samo miejsce w układzie okresowym pierwiastków. Wszystkie izotopy danego pierwiastka mają taką samą liczbę protonów, lecz różnią się liczbą neutronów w jądrze.
Aczkolwiek izotopy danego pierwiastka mają takie same właściwości chemiczne, można je rozróżnić stosując właściwości fizyczne. Niektóre są radioaktywne, wobec tego można je wykrywać i określić ilościowo na podstawie intensywności promieniowania. Inne izotopy można rozróżniać na podstawie nieznacznych różnic w masie atomowej spowodowanych obecności dodatkowego neutronu w jądrze. Substancje zawierające w jądrze izotop 15N (ciężki azot), zamiast zwykłego 14N lub 2H (ciężki wodór, deuter) w miejsce 1H mają większą masę, co można wykryć za pomocą spektrometru masowego.
Ogromny postęp w badaniach nad wyjaśnieniem szczegółów metabolicznej aktywności komórek zawdzięczamy zastosowaniu substancji „znakowanych” izotopami, np. cukru znakowanego przez wprowadzenie na miejsce zwykłego węgla (12C) węgla promieniotwórczego (11C lub 14C) bądź węgla ciężkiego (13C). Znakowaną substancję podaje się lub wstrzykuje badanemu zwierzęciu lub roślinie, bądź też hoduje się w jej roztworze komórki, a następnie izoluje się i bada znakowane produkty powstające w wyniku normalnego przebiegu procesów metabolicznych tych organizmów lub komórek. Doświadczenie takie pozwalają dokładnie prześledzić, etap po etapie, kolejne reakcje, jakim podlega dany związek oraz określić, w jakiej postaci znaczone atomy zostają ostatecznie wydzielone z komórki bądź organizmu. Dzięki zastosowaniu np. promieniotwórczego wapnia (45Ca) można zbadać szybkość tworzenia się substancji kostnej oraz wpływ na ten proces witaminy D i hormonu wydzielanego przez gruczoły przytarczyczne. Metoda ta pozwala na rozwiązanie wielu problemów biologicznych, które nie dałyby się rozwikłać w żaden inny sposób.


BOMBA KOBALTOWA

Urządzenie do napromieniowywania przedmiotów lub organizmów żywych promieniami emitowanymi przez izotop kobaltu 60Co o aktywności rzędu 1013-1014 Bq. Ze względu na dużą przenikliwość promieniowania, aktywny kobalt jest otoczony grubą osłoną biologiczną (warstwą ołowiu), w której znajdują się kanały wyprowadzające na zewnątrz wiązkę promieniowania. Bomba kobaltowa może też być wyposażona w mechanizm umożliwiający zdalną manipulację próbkami bez narażania otoczenia na promieniowanie. Bomba kobaltowa jest stosowana w lecznictwie do zwalczania chorób nowotworowych, w defektoskopii, do sterylizacji żywności oraz w chemii radiacyjnej do badań procesów fizykochemicznych zachodzących podczas napromieniowywania wysokoenergetycznymi kwantami prostych i złożonych układów chemicznych.



BROŃ JĄDROWA

Broń masowego rażenia, w której wykorzystuje się reakcję rozszczepienia jąder lub reakcję jądrową do wyzwalania w krótkim czasie wielkich ilości energii (wybuch jądrowy). Wyróżnia się następujące rodzaje broni jądrowej:

1. Bomba jądrowa (atomowa) -składa się z urządzenia detonującego, konwencjonalnego materiału wybuchowego (trotyl) i materiału rozszczepialnego (uran 235U lub pluton 239Pu), podzielonego na dwie lub więcej części, każda o masie mniejszej niż masa krytyczna. Wybuch bomby jądrowej następuje po odpaleniu ładunku prochowego i szybkim skupieniu wszystkich części materiału rozszczepialnego, co inicjuje niekontrolowaną reakcję rozszczepienia, trwającą aż do rozproszenia materiału rozszczepialnego. Moc bomby jądrowej może osiągnąć kilkaset kiloton TNT


2. Bomba termojądrowa (wodorowa) -składa się z substancji czynnej (prawdopodobnie mieszaniny deuteru i trytu lub deuterku litu 6LiD), połączonej z bombą jądrową i pełniącą funkcje zapalnika. Wybuch bomby jądrowej wytwarza temperaturę rzędu 107 K, niezbędna do zapoczątkowania niekontrolowanej reakcji termojądrowej. Moc bomby termojądrowej może dochodzić do 100 mln ton TNT.

3. Bomba kobaltowa -bomba jądrowa lub termojądrowa umieszczona w płaszczu z metalicznego kobaltu. W czasie wybuchu tej bomby powstaje w dużych ilościach izotop 60Co emitujący promieniowanie g, co powoduje znaczne skażenia promieniotwórcze terenu. Jak dotychczas, taka bomba nie była wypróbowana.

4. Bomba neutronowa -bomba termojądrowa, której główną część energii wybuchu unosi strumień neutronów szybkich. Niszczy przede wszystkim organizmy żywe.


Zastosowanie izotopów promieniotwórczych jako źródła promieniowania

Szeroką dziedzinę zastosowania izotopów promieniotwórczych stanowi radiografia. Metoda analizy radiograficznej polega na badaniu wewnętrznej struktury materiałów i wyrobów za pomocą promieniowania jonizującego (rentgenowskiego, gamma). W odlewach bardzo często tworzą się niepożądane pęcherze, luki i pęknięcia, pochłaniające promieniowanie jonizujące w inny sposób niż materiał, z którego został wykonany badany obiekt. W rezultacie na radiogramie, czyli na kliszy fotograficznej umieszczonej po przeciwległej stronie, w stosunku do źródła promieniowania badanego obiektu lub na ekranie fluoryzującym, są widoczne szczegóły badanego przedmiotu. W hutach i w fabrykach często stosuje się prześwietlanie konstrukcji aparatami rentgenowskimi (defektoskopia rentgenowska). Bardziej opłacalna jest metoda defektoskopii izotopowej, polegająca na wykorzystaniu Co, Cs, Ir, Tm lub mieszaniny Eu i Eu jako źródeł promieniowania gamma (defektoskopia gamma).

Izotopem promieniotwórczym jest zwykle kobalt 60 lub cez 137 znajdujący się w grubej osłonie biologicznej, najczęściej w kształcie kuli („bomby") z okienkiem przepuszczającym promienie gamma. Aparat nosi nazwę bomby kobaltowej lub cezowej. Termin „bomba kobaltowa” jest również stosowany do bomby jądrowej.

Defektoskopia izotopowa jest stosowana przede wszystkim w metalurgii, przemyśle maszynowym, stoczniowym, lotniczym i chemicznym. Bomby kobaltowe i cezowe są stosowane w medycynie do celów diagnostycznych (wykrywanie uszkodzeń kości) i w leczeniu nowotworów.




ZASTOSOWANIE IZOTOPÓW W NAUCE I TECHNICE

Obecnie jest już znanych ok. 1000 nietrwałych, promieniotwórczych izotopów pierwiastków chemicznych (radioizotopów) oraz ok. 300 trwałych. Wyodrębnienie, rozdzielenie i badanie chemiczne pierwiastków promieniotwórczych obejmuje dziedzina nauk chemicznych zwaną radiochemią. Ze względu na łatwość wykrywania izotopów promieniotwórczych, nawet z większej odległości, są one szeroko stosowane do badań analitycznych oraz do badania procesów fizycznych i chemicznych, jak dyfuzja w cieczach i ciałach stałych, rozpuszczalność, strącanie osadów, określanie poziomu cieczy w zbiornikach itp.




Radioizotopy oddają cenne usługi w defektoskopach służących do wykrywania wad w wyrobach metalowych. Promieniowanie y radioizotopu 60Co prześwietla stal o grubości 15 cm dając na kliszy obraz pęknięć i innych uszkodzeń wewnętrznych. W porównaniu do niewielkiego zasobnika z preparatem promieniotwórczym lampy rentgenowskie wymagałyby kosztownej i niewygodnej w użyciu dodatkowej aparatury.

Metody radiometryczne umożliwiają śledzenie wędrówki izotopów w organizmach, dzięki czemu można dziś znacznie dokładniej niż za pomocą klasycznych metod chemicznych poznać i zrozumieć metabolizm, czyli procesy przyswajania i przemiany materii w organizmie. W ten sposób stwierdzono np. gromadzenie się fluoru w zębach, prześledzono za pomocą izotopu fosforu 32P (T1/2= 14,5 dnia) procesy trawienne, dzięki izotopom jodu 131I (T1/2= 8 dni) gromadzącym się w tarczycy opanowano diagnostykę choroby Basedowa.

Ważną dziedziną, w której znalazły zastosowanie izotopy, jest badanie mechanizmu reakcji chemicznych za pomocą wskaźników izotopowych, czyli atomów znaczonych. Używając np. do reakcji estryfikacji alkoholu znaczonego izotopem tlenu 18O (nie promieniotwórczy, ale różni się masą od zwykłego tlenu) można ustalić, który z dwóch możliwych mechanizmów:
* *
I. RCOOH + HOCH3= RCOOCH3 – H2O
* *
II. RCOOH + HOCH3= RCOOCH3 + H2O

ma miejsce w rzeczywistości (tlen znaczony zaznaczono gwiazdką). Okazało się, że w ogromnej większości tego typu reakcji znaczony tlen pozostaje w cząsteczce estru, a zatem słuszny jest mechanizm I.




Zastosowanie izotopów w lecznictwie

Inne zastosowanie znajdują izotopy w lecznictwie. Tak na przykład choroby raka można leczyć przez naświetlanie promieniami X lub g. Do czasu odkrycia radioizotopów stosowano w tym celu promieniowanie rentgenowskie lub promieniowanie g radu. Obecnie coraz częściej stosuje się promieniowanie g emitowane przez kobalt 60 (energia fotonów gamma 1,1 – 1,3 MeV). W celu ochrony ludzi obsługujących aparaturę z kobaltem 60 umieszcza go się w bardzo grubej osłonie.
Promieniowanie g kobaltu 60 lub irydu 192 służy też tzw. defektoskopii gamma. Zasada działania jest analogiczna jak defektoskopii rentgenowskiej.
Podane tu przykłady nie wyczerpują oczywiście bardzo licznych, wzrastających z roku na rok, zastosowań radioizotopów.




















Wykorzystane źródła:

- Lech Pajdowski „Chemia ogólna” wydana w 1985 roku.
- strony internetowe z kategorii „chemia”

Czy tekst był przydatny? Tak Nie

Czas czytania: 8 minut