profil

Oscyloskop

Ostatnia aktualizacja: 2022-09-08
poleca 85% 544 głosów

Treść
Grafika
Filmy
Komentarze

Oscyloskop - przyrząd elektroniczny służący do obserwowania, obrazowania i badania przebiegów zależności pomiędzy dwoma wielkościami elektrycznymi, bądź innymi wielkościami fizycznymi reprezentowanymi w postaci elektrycznej. Oscyloskop stosuje się najczęściej do badania przebiegów szybkozmiennych, niemożliwych do bezpośredniej obserwacji przez człowieka. Głównym elementem budowy oscyloskopu jest lampa oscyloskopowa

Rozróżnia się 3 rodzaje oscyloskopów:


- z odchylaniem ciągłym lub okresowym,
- uniwersalne z odchylaniem ciągłym i wyzwalanym,
- szybkie (bardzo dużej częstotliwości).
W zależności od technologii analizy sygnału wyróżnić można oscyloskopy:
- analogowe z lampą oscyloskopową na której obraz generowany jest w wyniku oddziaływania obserwowanych przebiegów na układ odchylania wiązki elektronowej
- cyfrowe z monitorem wyświetlającym obraz wygenerowany przez układ mikroprocesorowy na podstawie analizy zdigitalizowanych sygnałów wejściowych.

Oscyloskopy mogą występować jako system wbudowany albo oprogramowanie.
Oscyloskop został wynaleziony przez Thomasa Edisona.

Oscyloskop


Oscyloskop to urządzenie elektroniczne przeznaczone do obserwacji napięcia stałego i przemiennego, znajduje również zastosowanie przy pomiarze wartości prądu, częstotliwości, kąta fazowego i innych wielkości elektrycznych oraz nieelektrycznych dających się przetworzyć na napięcie. Głównym podzespołem oscyloskopu jest lampa oscyloskopowa.

Lampa oscyloskopowa jest to element, w którym strumień elektronów może odchylać się w polu magnetycznym lub elektrycznym, z jednej strony znajduje się działo elektronowe, czyli zespół elektrod emitujących elektrony, z drugiej strony znajduje się ekran pokryty od wewnątrz warstwą substancji fluoryzującej, czyli wysyłającej światło pod wpływem podającej na nią wiązki elektronów. Elektrony są wysyłane przez podgrzaną katodę w kierunku ekranu, anody przyspieszają ich ruch. Elektrony wyrzucone z katody przechodzą przez mały otwór w walcu metalowym zwanym cylindrem Wehelta, osłaniającym katodę. Przez zmianę ujemnego napięcia potencjometrem R1 można zmieniać natężenie wiązki elektronów, a przez to jasność wiązki na ekranie. Zadaniem pierwszej anody jest skupienie wiązki elektronów, zmiana dodatniego potencjału tej anody nastawiana potencjometrem R2 powoduje zmianę wartości plamki świetlnej. Strumień wysyłających elektronów można odchylać od osiowego obiegu układem elektrod złożonym z pary płytek odchylania pionowego Y i poziomego X.

Jeżeli do jednej pary płytek przyłożymy stałą różnicę potencjałów to pole elektrostatyczne odchyli wiązkę elektronów w kierunku elektrody o wyższym potencjale. Jeżeli przyłożymy zmienną w czasie różnice potencjałów to elektrony będą wykonywały drgania pomiędzy tymi elektrodami. Przy dostatecznie dużej częstotliwości zmian napięcia będziemy obserwować na ekranie oscyloskopu jasną kreskę jako ślad drogi, po której wędruje strumień elektronów. W celu obserwacji przebiegu napięć do płytek odchylania poziomego należy przyłożyć napięcie o piłokształtnym przebiegu.

Napięcie takie jest generowane przez generator podstawy czasu. W czasie t1 d t2 napięcie wzrasta linowo proporcjonalnie do czasu, a plamka świetlna przesuwa się równomierne od lewej strony ekranu do prawej, po osiągnięciu wartości maksymalnej napięcia bardzo szybko powraca do swojej wartości początkowej, w czasie od t2 do t3, jeżeli teraz do płytek odchylania pionowego Y przyłoży się napięcie o nieznanym przebiegu to zostanie ono odwzorowane na ekranie przez ruchomą wiązkę elektronów.
Uproszczony schemat blokowy oscyloskopu.

Zadaniem bloku synchronizacji jest dostrojenie częstotliwości napięcia podstawy do czasu tak, aby była ona równa całkowitej wielokrotności częstotliwości przebiegu badanego. W przypadku synchronizacji obraz na ekranie lampy jest nieruchomy, generator podstawy czasu może być wyzwolony przebiegiem badanym (synchronizacja wewnętrzna pozycja 1 przełącznika P2) lub inny napięciem okresowym doprowadzonym z zewnątrz (synchronizacja zewnętrzna pozycja 2 przełącznika P2) generator podstawy czasu normalnej pracy oscyloskopu zasila płytki odchylania poziomego X (pozycja 2 przełącznika P1). Może on być jednak odłączony (pozycja 1 przełącznika P1) i do płytek można doprowadzić napięcie z generatora zewnętrznego.

Czy tekst był przydatny? Tak Nie

Czas czytania: 3 minuty