profil

Półprzewodniki- referat

poleca 85% 647 głosów

Treść
Grafika
Filmy
Komentarze

Półprzewodniki - najczęściej substancje krystaliczne, których konduktywność (zwana też konduktancją właściwą) jest rzędu 10-8 do 106 S/m (simensa na metr), co plasuje je między przewodnikami a dielektrykami. Wartość rezystancji półprzewodnika maleje ze wzrostem temperatury. Półprzewodniki posiadają pasmo wzbronione między pasmem walencyjnym a pasmem przewodzenia w zakresie 0 - 5 eV (np. Ge 0,7 eV, Si 1,1 eV , GaAs 1,4 eV, GaN 3,4 eV). Koncentracje nośników ładunku w półprzewodnikach można zmieniać w bardzo szerokich granicach, zmieniając temperaturę półprzewodnika lub natężenie padającego na niego światła lub nawet przez ściskanie lub rozciąganie półprzewodnika. W przemyśle elektronicznym najczęściej stosowanymi materiałami półprzewodnikowymi są pierwiastki grupy 14 (np. krzem, german) oraz związki pierwiastków grup 13 i 15 (np. arsenek galu, azotek galu, antymonek indu) lub 12 i 16 (tellurek kadmu). Materiały półprzewodnikowe są wytwarzane w postaci monokryształu, polikryształu lub proszku. Półprzewodniki, wynaleziono w roku 1926 przez dr Julius Edgar Lilienfield z Nowego Jorku. Do lat 1950-tych ich własności nie rozumiano, niestety, poważne badania nad półprzewodnikami nie rozpoczęto aż do czasów II Wojny Światowej. W czasie jej trwania odkryto, iż urządzenia zbudowane na bazie półprzewodników mogą być potencjalnymi wzmacniaczami i przełącznikami i dlatego mogą one zastąpić panującą wtedy powszechnie technologię lamp próżniowych, lecz byłyby dużo mniejsze, lżejsze i wymagałyby mniej energii. Półprzewodniki są to substancje zachowujące się w pewnych warunkach tak jak dielektryk, czyli przedmiot nieprzewodzący prądu elektrycznego, ze względu na brak wolnych elektronów, a w pewnym zakresie półprzewodnik staje się przewodnikiem, czyli posiada małą oporność i wolne elektrony, które umożliwiają przepływ prądu elektrycznego. Istota przewodnictwa elektrycznego w półprzewodnikach polega na przemieszczaniu się elektronów swobodnych pod wpływem pola elektrycznego. Ważną cechą półprzewodników jest to, że ich zdolność przewodzenia zależy od wielu czynników, w tym głównie od zawartości domieszek i temperatury. Typowymi materiałami na półprzewodniki są: krzem, german, arsenek galu, lub antymonek galu które w czystej postaci nie przewodzą prądu. Wszystkie półmetale są półprzewodnikami.
Rodzaje półprzewodników
samoistne- półprzewodnik samoistny jest to półprzewodnik, którego materiał jest idealnie czysty, bez żadnych zanieczyszczeń struktury krystalicznej. Koncentracja wolnych elektronów w półprzewodniku samoistnym jest równa koncentracji dziur.
Przyjmuje się, że w temperaturze 0 kelwinów w paśmie przewodnictwa nie ma elektronów, natomiast w T>0K ma miejsce generacja par elektron-dziura; im wyższa temperatura, tym więcej takich par powstaje.

Domieszkowe- Półprzewodniki samoistne nie posiadają zbyt wielu elektronów swobodnych (co objawia się dużym oporem właściwym, czyli małą przewodnością właściwą), dlatego też stosuje się domieszkowanie. Materiały uzyskane przez domieszkowanie nazywają się półprzewodnikami niesamoistnymi lub półprzewodnikami domieszkowanymi.
Domieszkowanie polega na wprowadzeniu do struktury kryształu dodatkowych atomów pierwiastka, który nie wchodzi w skład półprzewodnika samoistnego. Na przykład domieszka krzemu (Si) w arsenku galu (GaAs). Ponieważ w wiązaniach kowalencyjnych bierze udział ustalona liczba elektronów podmiana któregoś z jonów atomem domieszki może spowodować wystąpienie nadmiaru lub niedoboru elektronów.
Wprowadzenie domieszki produkującej nadmiar elektronów (w stosunku do ilości niezbędnej do stworzenia wiązań) powoduje powstanie półprzewodnika typu n, zaś domieszka taka nazywana jest domieszką donorową. W takim półprzewodniku powstaje dodatkowy poziom energetyczny (poziom donorowy) położony w obszarze energii wzbronionej bardzo blisko dna pasma przewodnictwa, lub w samym paśmie przewodnictwa. Nadmiar elektronów jest uwalniany do pasma przewodnictwa (prawie pustego w przypadku półprzewodników samoistnych) w postaci elektronów swobodnych zdolnych do przewodzenia prądu. Mówimy wtedy o przewodnictwie elektronowym, lub przewodnictwie typu n (z ang. negative - ujemny).
Wprowadzenie domieszki produkującej niedobór elektronów (w stosunku do ilości niezbędnej do stworzenia wiązań) powoduje powstanie półprzewodnika typu p, zaś domieszka taka nazywana jest domieszką akceptorową. W takim półprzewodniku powstaje dodatkowy poziom energetyczny (poziom akceptorowy) położony w obszarze energii wzbronionej bardzo blisko wierzchołka pasma walencyjnego, lub w samym paśmie walencyjnym. Poziomy takie wiążą elektrony znajdujące się w paśmie walencyjnym (prawie zapełnionym w przypadku półprzewodników samoistnych) powodując powstanie w nim wolnych miejsc. Takie wolne miejsce nazwano dziurą elektronową. Zachowuje się ona jak swobodna cząstka o ładunku dodatnim i jest zdolna do przewodzenia prądu. Mówimy wtedy o przewodnictwie dziurowym, lub przewodnictwie typu p (z ang. positive - dodatni). Dziury, ze względu na swoją masę efektywną, zwykle większą od masy efektywnej elektronów, mają mniejszą ruchliwość a przez to oporność materiałów typu p jest z reguły większa niż materiałów typu n.
Rolę domieszki może pełnić również atom międzywęzłowy (atom umiejscowiony poza węzłami sieci) oraz wakans (puste miejsce w węźle sieci w którym powinien znajdować się atom).
- fotoprzewodniki-rezystor półprzewodnikowy, którego rezystancja zależy od natężenia padającego nań promieniowania elektromagnetycznego (z zakresu opt.); działanie oparte na zjawisku fotoprzewodnictwa; stosowane m.in. w fotografii, technice wojsk., termometrii.
Zastosowania
? diody
o dioda prostująca (dioda prostownicza)
o dioda stabilizacyjna (dioda Zenera)
o dioda pojemnościowa
o dioda Schottky'ego
o dioda tunelowa
o dioda świecąca (dioda elektroluminescencyjna - LED)
o dioda sterowana tyrystor
o fotodioda półprzewodnikowa
? lasery półprzewodnikowe
? tranzystory
o tranzystor unipolarny (tranzystor polowy)
o fototranzystor
o tranzystor bipolarny
? hallotron
? termistor
Odkrycie półprzewodników i wynalezienie licznych ich zastosowań spowodowało rewolucyjny postęp w elektronice.

Czy tekst był przydatny? Tak Nie

Czas czytania: 4 minuty