profil

Budowa reaktora jądrowego

poleca 85% 139 głosów

Treść Grafika
Filmy
Komentarze
uran

Reaktor jądrowy


Moją prace rozpocznę od opisania, czym właściwie jest reaktor jądrowy. Urządzenie to służy do przeprowadzania z kontrolowaną szybkością reakcji rozszczepienia jąder atomowych. Reakcja rozszczepienia jąder atomowych ma przebieg lawinowy – jedna reakcja może zainicjować kilka następnych. W celu kontrolowania szybkości reakcji tak by przebiegała z jednakową prędkością (mówimy że reakcja ma przebieg łańcuchowy tzn. jedno rozszczepienie inicjuje następne rozszczepienie jądra atomowego) wprowadza się do reaktora substancje pochłaniające neutrony. Substancje te umieszczone są w prętach zwanych regulacyjnymi.
Rozszczepienie jądra uranu w 1938 roku udało się niemieckim fizykom atomowym Otto Hahnowi i Fritz Strassmannowi stało się podstawą narodzenia się w 1939 roku idei reakcji łańcuchowej rozszczepiania, a następnie zamysłu przeprowadzenia owej reakcji w sposób kontrolowany, czyli reakcji jądrowej.
W USA w ramach tzw. Projektu „Manhattan” doszło do powstania pierwszego reaktora atomowego, pod kierownictwem włoskiego emigranta, fizyka atomowego Enrico Fermiego - w 1942 roku uruchomiono w Stagg Field pod Chicago pierwszy reaktor jądrowy. Zasadniczą część owego reaktora jądrowego stanowił blok grafitowy, w którym znajdowały się pręty uranowe i kadmowe. Uran był materiałem rozszczepialnym, czyli paliwem jądrowym, grafit pełnił rolę moderatora (spowalniacza) zmniejszającego prędkość neutronów do najbardziej skutecznej dla przebiegu reakcji, rola kadmu zaś polegała na pochłanianiu neutronów, aby ich liczba nie wzrosła do poziomu grożącego eksplozją. Oczywiście reaktor jądrowy miał odpowiednią osłonę, nie przepuszczającą promieniowania na zewnątrz, a czynnikiem chłodzącym była woda.
Paliwem używanym obecnie w elektrowniach atomowych jest w większości reaktorów (a we wszystkich wodnych) wzbogacony uran. Wzbogacenie polega na zwiększeniu zawartości rozszczepialnego U-235 do około 3-5% (z około 0,7%), ale reaktory ciężko wodne (CANDU, PHWR) pracują przy naturalnym udziale izotopów. W przyszłości planuje się wykorzystywać jako paliwo jądrowe wzbogacony tor. W wyniku rozszczepienia toru powstają jądra atomowe o mniejszej masie niż przy rozszczepieniu uranu lub plutonu i jest wśród nich więcej jąder trwałych. Niestety rozszczepienie toru wytwarza zbyt mało neutronów by uzyskać masę krytyczną, w związku z tym do reaktora takiego trzeba by wstrzeliwać neutrony pochodzące z zewnątrz..
Uran jest metalem ciężkim, który otrzymujemy z rud uranowych. Najbardziej znaną z nich jest smółka uranowa, składająca się w 95% z tlenku uranu i występująca nieraz w postaci wielotonowych bloków. Większość pozostałych rud zawiera niestety znacznie mniej uranu. Wydobycie staje się opłacalne, gdy tona rudy zawiera co najmniej kilka kg uranu. Ruda wydobyta w kopalniach lub odkrywkach musi najpierw zostać poddana obróbce. Polega ona na łamaniu, mieleniu i wyługowaniu. W rezultacie otrzymujemy ostatecznie ponad 70-procentowy koncentrat uranowy, tzw. \"yellow cake\", czyli \"żółte ciasto\", jest to produkt wyjściowy do dalszej obróbki. Czysty uran naturalny jest dla elektrowni jądrowych nieprzydatny, jako, że tylko w 0,7% składa się z rozszczepialnego U-235, a pozostałe 99,3% stanowi nieco cięższy, nie rozszczepialny U-238. Obydwa izotopy uranu nie różnią się między sobą pod względem chemicznym, stąd do wzbogacania wykorzystuje się różnicę w ich ciężarze. Najpierw przemienia się uran za pomocą fluoru w gaz, sześciofluorek uranu (UF6), zatem w związek uranu i fluoru. Do rozdzielenia obydwu izotopów uranu, można teraz wykorzystać jedną z następujących metod. W metodzie kanalikowej przepuszcza się UF6 z dużą prędkością przez drobne kanaliki o kształtach półkolistych. Występująca tu siła odśrodkowa wypycha składową gazu zawierającą U-238 ku obrzeżom toru, co umożliwia oddzielenie jej od składowej gazu zawierającej lżejszy U-235. Oczywiście w ten sposób nie jest możliwe całkowite rozdzielenie obydwu izotopów. Jeśli jednak połączy się wiele opisanych tu układów w tzw. kaskadę, to otrzyma się w rezultacie gaz zawierający wystarczającą koncentrację atomów U-235. W metodzie dyfuzyjnej przepuszcza się gaz UF6 przez przegrody półprzepuszczalne. Lżejsza składowa z U-235 przechodzi (dyfunduje) przez pory przegród szybciej niż cięższa z U-238. Prowadzi to także do częściowego rozdziału składowych. W metodzie wirówkowej wiruje się gaz w bardzo szybkiej centryfudze. Siła odśrodkowa przyciska składową cięższą silniej do ściany, wobec czego koncentracja lżejszego U-235 w środkowej części wirówki wzrasta. Również i tu osiągamy rozdział U-235 i U-238, choć konieczne jest połączenie wielu układów szeregowo, by uzyskać pożądane wzbogacenie. Inne metody, w których osiągano by wymagane wzbogacenie w pojedynczym procesie, są jeszcze w stadium opracowań. Paliwem może być również Pluton, jest on jednak rzadko używany.
Yellow cake Wydobycie uranu Rudy uranu


Typowy reaktor jądrowy zbudowany jest z:

1. Rdzenia w którego skład wchodzą:
- Pręty paliwowe - zawierają paliwo jądrowe ( zwykle granulowany tlenek uranu).
- Pręty regulujące i pręty bezpieczeństwa - zbudowane są z substancji pochłaniających neutrony (np. bor, kadm), przy czym pręty regulacyjne służą do precyzyjnej zmiany strumienia neutronów, podczas gdy pręty bezpieczeństwa mają za zadanie całkowite przerwanie reakcji łańcuchowej w sytuacji awaryjnej - oba te rodzaje prętów wsuwa się i wysuwa z rdzenia w miarę potrzeby.
Pełny wsad paliwa do przeciętnego reaktora składa się z kilkuset takich prętów. Pręty pozostają w reaktorze 4-5 lat. Po tym czasie wypalone paliwo jądrowe jest przesyłane do jego dostawcy, który składuje je, odzyskując zwykle wcześniej wytworzony pluton i nie spalony uran.
- Chłodziwa - reaktory trzeba chłodzić, by odbierać produkowaną w nich energię. Chłodziwo w wymiennikach ciepła grzeje wodę w drugim obiegu, nie stykając się bezpośrednio z reaktorem. Chłodziwem może być zarówno zwykła jak i ciężka woda. Niekiedy buduje się reaktory, w których ciśnienie wody chłodzącej dobrano w ten sposób, że wrze ona, gdy przechodzi przez rdzeń reaktora. W innych woda pod ciśnieniem 100-140 atmosfer ogrzewa się nawet do 3000C, co pozwala na znaczne podniesienie sprawności urządzenia. Chłodziwem może być również powietrze, gazy, tj. wodór czy hel, lub ciekły metal - sód, potas bądź bizmut
- Kanały badawcze - służą do kontrolowania poziomu strumienia neutronów, wykonywania naświetlań itp.
- Moderator - w nowoczesnych reaktorach należy go stosować. Obecnie stosuje się trzy jego rodzaje: grafit, wodę, ciężką wodę. Jego zadaniem jest spowolnianie neutronów. Jeżeli szybkie neutrony zderzą się z jądrami lekkich pierwiastków, następuje ich spowolnienie. Na początku najczęściej stosowano grafit. Obecnie wykorzystujemy go w niektórych rodzajach reaktorów, w tym w wysokowydajnych grafitowo-sodowych, chłodzonych ciekłym sodem. Reaktory, w których role moderatora pełni ciężka woda, charakteryzują się najmniejszymi stratami neutronów.

2. Reflektor neutronów - celem reflektora neutronów jest zwiększenie strumienia neutronów w zewnętrznych częściach rdzenia lub ładunku. Dzięki rozpraszaniu neutronów wstecz, do obszaru zachodzenia reakcji łańcuchowej.

3.Osłony biologiczne- zabezpieczają, żeby promieniowanie nie wydostało się na zewnątrz.

Zbiornik ciśnieniowy

Energia elektryczna wytwarza się na skutek obrotów turbiny poruszanej przez parę wodą, turbina natomiast porusza generator, który poprzez zjawisko indukcji elektrycznej wytwarza prąd.
Turbina

Podział reaktorów ze względu na zastosowanie
1) energetyczne,
- reaktory wodne, ciśnieniowe (tzw. PWR i WWER) , w których chłodziwem i moderatorem jest zwykła woda pod ciśnieniem (na tyle wysokim by woda nie zaczęła odparowywać podczas normalnej pracy reaktora).
wyjątkowymi reaktorami wodnymi, ciśnieniowymi są reaktory RBMK (tego typu reaktory są między innymi w Czarnobylu, nie ma natomiast takich reaktorów poza terenem byłego ZSRR, gdyż nie spełniają i nigdy nie spełniały podstawowych warunków bezpieczeństwa), chłodzone są wodą, a moderowane grafitem.
-reaktory wodne, wrzące (BWR), w których chłodziwem i moderatorem jest również zwykła woda, ale wrząca,
-reaktory ciężkowodne (PHWR, CANDU), chłodziwem i moderatorem jest ciężka woda,
-reaktory gazowe (GCR, AGR, HTGR), w których chłodziwem jest gaz (dwutlenek węgla lub hel), a moderatorem grafit,
2) napędowe (głównie łodzi podwodnych i dużych okrętów wojennych),
3) militarne (wytwarzające materiał rozszczepialny do broni jądrowej),
4) badawcze.
Również w Polsce znajdowały się reaktory jądrowe. Był to reaktor o nazwie „Ewa”, pierwszy w Polsce doświadczalny reaktor jądrowy, uruchomiony w Instytucie Badań Jądrowych w Świerku pod Warszawą (obecnie Instytut Energii Atomowej) dnia 14 czerwca 1958r. Była to konstrukcja radziecka, typu WWR-S, o mocy cieplnej pierwotnie równej 2 MW, gdzie paliwem był wzbogacony do 10% uran, moderatorem i chłodziwem natomiast zwykła woda. W 1963 i 1967 reaktor modernizowano, m.in. zwiększając wzbogacenie paliwa (dodając również układy zwiększające bezpieczeństwo eksploatacji), w wyniku czego jego moc cieplna wzrosła kolejno do 4 MW i 10 MW. Reaktor ten był wykorzystywany do produkcji izotopów promieniotwórczych, corocznie pracując przez ok. 3500 godz. Reaktor Ewa został zdemontowany. Drugi polski reaktor nosił nazwę „Maria”, upamiętniając Marę Skłodowską Curie, największy reaktor jądrowy znajdujący się w Polsce (Świerk pod Warszawą), uruchomiony w grudniu 1974. Moc cieplna reaktora Marii wynosi 30 MW.

Wyróżniamy kilka rodzajów Reaktorów ze względu na ich budowę:
1) wodny wrzący - zamienia wodę w parę za pomocą energii jądrowej. Następuje to w zbiorniku ciśnieniowym reaktora. Para pod ciśnieniem około 7MPa napędza turbinę, która dostarcza generatorowi energii potrzebną do wytworzenia prądu. We wspomnianym zbiorniku ciśnieniowym reaktora, który w omawianym przykładzie posiada ścianki o grubości 16 cm, znajduje się rdzeń reaktora, przez który przepływa woda doprowadzana do wrzenia. Rdzeń reaktora składa się z około 800 elementów paliwowych. Każdy element paliwowy znajduje się w blaszanym pojemniku, do którego woda dostaje sie przez otwór w spodzie. Woda wypełnia pojemnik i styka się z 64 prętami paliwowymi, czyli prętami wykonanymi np. z rozszczepialnego uranu. Pręty składają się zazwyczaj ze wzbogaconego uranu w postaci dwutlenku uranu (UO2). Podczas rozszczepiania jąder uranu wydziela się duża ilość energii, którą w formie ciepła odbiera woda chłodząca (chłodziwo). Woda służy też jednocześnie jako moderator (hamuje więc do tego stopnia prędkie neutrony, powstałe podczas każdego rozszczepienia jądra, że same mogą powodować dalsze rozszczepienia).
2) wodny ciśnieniowy - woda stykająca się z rdzeniem reaktora nie gotuje się. Uniemożliwia jej to ogromne ciśnienie - rzędu 15 MPa. Woda ta krąży w obiegu pierwotnym i w odpowiedniej wytwornicy pary ogrzewa wodę obiegu wtórnego, a zatem nie styka się z nią bezpośrednio. Woda obiegu pierwotnego schładza się przy tym z 330C do 290C. Podczas gdy woda obiegu wtórnego wrze i wytworzoną parą napędza turbinę i generator, to woda obiegu pierwotnego, ciągle w stanie ciekłym, jest pompowana do rdzenia, gdzie ponownie ogrzewa się do 330C. Odpowiedni regulator ciśnienia zapewni stałe ciśnienie tej wody. Typowy reaktor wodny ciśnieniowy o mocy 1300 MW ma rdzeń zawierający około 200 elementów paliwowych po 300 prętów paliwowych każdy. Sterowanie reaktorem odbywa się z jednej strony przez zmianę stężenia roztworu boru (pochłaniającego neutrony) w wodzie obiegu pierwotnego, z drugiej strony zaś przez pręty regulacyjne, zawierające kadm, które, jak już poprzednio wspomniałem, można wsuwać i wysuwać. Woda także jest tu spowalniaczem.

3) Powielający - jądra U-238 mogą wchłaniać neutrony, przemieniając się przy tym w jądra plutonu, które można łatwo rozszczepić i wykorzystać do produkcji energii. Reaktor powielając wykorzystuje tą własność. Jako materiał rozszczepialny jest w nim stosowany Pu-239, który podczas rozpadu produkuje 2 lub 3 neutrony. Jeden z nich jest potrzebny do podtrzymania reakcji łańcuchowej, podczas gdy pozostałe są przekazywane do jąder U-238, które przemieniają się w Pu-239. Tak powstaje nowe paliwo. Reaktor wytwarza w ten sposób nowe paliwo. W optymalnym przypadku może wytworzyć nawet więcej paliwa niż sam zużył. Ten proces zachodzi także w innnych typach reaktorów, ale w marginalnych ilościach. Zasoby U-238 są znaczne, więc powszechnie uważa się, że w przyszłości takie reaktory odegrają duża role w wytwarzaniu energii. Reaktor składa się z elementów paliwowych, w których wytwarzana jest energia oraz z elementów powielających, gdzie powstaje nowe paliwo. Z powodu obecności dużej ilości materiału rozszczepialnego wytwarzanie ciepła w elementach paliwowych jest bardziej intensywne. Dlatego ochładza się taki reaktor ciekłym sodem, który dobrze przewodzi ciepło, ale w przeciwieństwie do wody słabo hamuje neutrony. Są więc one ciągle prędkie. Obieg pierwotny ciekłego sodu ogrzewa ciekły sód w obiegu wtórnym. Ten doprowadza do wrzenia, a wytworzona para napędza urządzenia produkujące prąd.
4) Wysokotemperaturowy - zużywa jako surowiec energetyczny obok uranu także tor-232, który w trakcie pracy reaktora pochłania neutrony i przemienia się z rozszczepialny U-233. Stosowane paliwo ma postać drobnych granulek, które następnie zasklepia się w kulach grafitowych wielkości piłki tenisowej. Grafit służy jako moderator hamujący neutrony. Wytworzone w reaktorze ciepło podgrzewa gaz - na przykład obojętny chemicznie hel - do około 900C. Gaz ten z kolei odparowywuje wodę, która napędza turbinę.
5) Jednorodny - rdzeń reaktora jest wypełniony roztworem wodnym jakiegoś pierwiastka, będącego paliwem jądrowym, np. siarczanu uranu UO2SO4, lub inną cieczą, a nawet proszkiem. Zaletami takiego reaktora uniknięcie trudnej i kosztownej produkcji prętów paliwowych i kłopotów związanych z wymianą prętów. We wszystkich tych reaktorach występują dwa obiegi, co ma chronić obsługę reaktora przed promieniowaniem: pierwotny-przechodzący przez reaktor i wtórny z turbiną parową.
Z paliwa jądrowego można uzyskać więcej energii elektrycznej, niż z jakiegokolwiek innego źródła naturalnego:
- 1 kg węgla dostarcza 3 kWh energii
- 1 kg drewna - 1 kWh energii
- 1 kg nafty - 4 kWh
- 1 kg uranu - 50 tys. kWh


Niestety wytwarzanie energii elektrycznej tą drogą ma również swoje złe strony, między innymi składowanie odpadów, oraz możliwość awarii jaka miała miejsce w Czarnobylu. W elektrowni jądrowej wymienia się co roku prawie trzecią część elementów paliwowych na nowe. W dużej elektrowni jądrowej o mocy 1300 MW opuszcza reaktor rok w rok ok. 30 t uranu. Ten materiał jest wprawdzie skażony groźnymi dla życia produktami rozpadu promieniotwórczego, jednak z drugiej strony zawiera cenne, możliwe do odzyskania materiały rozszczepialne. Stąd usuwanie i obróbka wysłużonych elementów paliwowych jest niezmiernie istotnym czynnikiem zarówno z punktu widzenia ochrony środowiska naturalnego, jak i opłacalności przedsięwzięcia. Postępuje się następująco. Po trwającej około roku obecności elementów paliwowych w basenie z wodą, w elektrowni jądrowej przenosi się je na tzw. składowiska pośrednie. Elementy paliwowe pozostają w tym czasie wewnątrz pojemników transportowych, zapewniających całkowicie bezpieczne składowanie i chroniących od promieniowania radioaktywnego. Następnie poddaje się pręty paliwowe przeróbce. Nadające się do wykorzystania paliwo zostaje odzyskane i przekazane do produkcji nowych elementów paliwowych. Niebezpieczne produkty rozpadu radioaktywnego są oddzielane i na zawsze składowane w mogilnikach. Istnieje oczywiście możliwość złożenia wypalonych elementów paliwowych w mogilnikach bez żadnej obróbki i odzysku. Odpady pochodzące z urządzeń atomowych pracujących w instytutach badawczych, elektrowniach jądrowych czy zakładach przerobu wykazują różne stopnie zagrożenia. Słabo aktywne odpady w postaci stałej lub ciekłej są najpierw na drodze stężania, ściskania lub spalania redukowane do możliwie najmniejszej objętości. Następnie zostają zacementowane w beczkach. Średnio aktywne odpady, na przykład rozdrobnione koszulki prętów paliwowych, zacementowuje się także w beczkach. Szczególna ostrożność wymagana jest przy odpadach wysoko aktywnych. Są nimi przede wszystkim rozpuszczone w kwasie azotowym produkty rozpadu. Dają one 99% promieniowania wszystkich odpadów promieniotwórczych! Dla tych niebezpiecznych dla życia substancji opracowano specjalny proces zeszkliwiania. Te wysoko aktywne roztwory najpierw się zagęszcza i chemicznie przetwarza. Następnie w temperaturze 1150C stapia się je z proszkiem szklanym, tworząc z nich nierozłączny składnik szkliwa, którym wypełnia się grubościenne beczki ze stali nierdzewnej. W zakładzie przerobu przypada na każdą tonę uranu około 130 l wysoko aktywnego odpadu w postaci bloku szkliwa, 5 beczek po 400 l odpadu średnio aktywnego, oraz 15 beczek słabo aktywnego. Te odpady trzeba zmagazynować w sposób bezpieczny \"po wsze czasy\", czyli bez ograniczeń czasowych, gdyż nawet po wielu pokoleniach będą one nadal stanowić duże zagrożenie. Niestety będą one zaśmiecały naszą planetę.
Większym zagrożeniem jest awaria, np. taka jak w Czarnobylu, ponieważ przynosi ona śmierć bardzo wielu osób, skażenie środowiska i zniszczenie fauny i flory. Do dziś w okolicach miejsca awarii rodzą się dzieci z wrodzonymi wadami genetycznymi, a na terenach elektrowni nie rosną żadne rośliny. 26 kwietnia 1986 roku, o godzinie 1.23 czasu moskiewskiego, na skutek ewidentnych błędów operatora i wyłączenia systemów awaryjnych w trakcie przeprowadzania eksperymentu mającego zwiększyć bezpieczeństwo pracy reaktora, doszło do utraty kontroli nad reaktorem bloku IV.
Moc reaktora wzrosła ok. stukrotnie, co spowodowało wzrost temperatury rdzenia do ok. 2000C i dwa kolejne wybuchy (rozsadzenie układu chłodzenia przez parę wodną i wybuch mieszaniny piorunującej, pochodzącej z rozkładu wody na wodór i tlen pod wpływem kontaktu z rozżarzonymi materiałami konstrukcyjnymi, np. grafitem i cyrkonem).
Wybuch rozpoczął dziesięciodniowy pożar moderatora grafitowego, w trakcie którego rdzeń reaktora stopił się, a do środowiska przedostało się kilkadziesiąt izotopów promieniotwórczych. Pożar ugaszono dzięki poświęceniu gaszących strażaków i wojska, 31 osób zmarło w wyniku bezpośredniego napromienienia i oparzeń, ponad 200 było hospitalizowanych w związku z chorobą popromienną.Trzydziestokilometrową strefę wokół reaktorów ewakuowano i zamknięto, później ewakuowano też ludność z najsilniej skażonych terenów Białorusi (np. wsie w rejonie Homla odległe o ponad 200 km od reaktora). Katastrofa w Czarnobylu była największą w dziejach katastrofą reaktora jądrowego, jednak pod względem ilości substancji promieniotwórczych wprowadzonych do środowiska ustępuje miejsca próbom z bronią jądrową prowadzonym w latach 50. i 60, głównie przez USA i były ZSRR oraz eksploatacji (w przeciągu 40 lat) zakładów przeróbki paliwa jądrowego w byłym ZSRR. W chwili obecnej w Czarnobylu reaktor IV pokryty jest ochronnym budynkiem (tzw. sarkofagiem), pozostałe trzy reaktory pracują.


Blok reaktora nr 4 w Czarnobylu



Pisząc ten referat oparłem się na wiadomościach zawartych:
- w atlasie „Co i Jak” Tom 5 – „Energia Atomowa”
- na stronie internetowej wikipedia.pl
- w encyklopedii popularnej PWN
- na stronie internetowej wynalazki.mt.com.pl
- w książce pt. „100 największych wynalazków”.

Załączniki:
Czy tekst był przydatny? Tak Nie

Czas czytania: 16 minut