profil

Broń nuklearna

poleca 85% 184 głosów

Treść
Grafika
Filmy
Komentarze

Bomba jądrowa jest przedmiotem nie tylko intensywnych badań i rozlicznych kontrowersji, ale i niesamowicie fascynującym "laboratorium" arcyciekawych procesów fizycznych czy chemicznych. Niezwykła siła rażenia tej broni polega na wykorzystaniu rozlicznych zjawisk zachodzących przy procesach nuklearnych. Fizyczne i chemiczne podstawy działania bomby jądrowej to zjawiska naprawdę niezwykłe, a ich poznanie pozwala w pełni zrozumieć złowrogi cień zagłady, jaki niesie ze sobą hasło "bomba jądrowa"...
Jednym z głównych atutów bomby jądrowej jest niezwykła wręcz ENERGIA WYBUCHU, wielokrotnie przekraczająca energię wyzwalaną przez konwencjonalne materiały wybuchowe.

Źródło energii


Przedział możliwej wytwarzanej energii (20 kiloton - 25 megaton) wynika z różnych rozwiązań jej otrzymywania. Biorąc pod uwagę źródło energii, a tym samym zasadę działania bomby, dzieli się je na trzy rodzaje:
· bomba o ładunku jednofazowym (zwana bomba atomową lub bombą A);
· bomba o ładunku dwufazowym (zwana bombą wodorową, bombą H, bombą neutronową lub bombą termojądrową);
· bomba o ładunku trójfazowy (zwana bombą kombinowaną, wodorowo-uranową lub termojądrową wielkiej mocy).

We wszystkich rodzajach bomb jednak pierwszą fazą (w przypadku bomby jednofazowej jedyną) jest rozszczepienie materiału radioaktywnego, którym w bombie jest uran wzbogacony o pluton.

Bomba atomowa (jednofazowa)

Reakcja rozszczepienia


Reakcja rozszczepiania polega na rozpadzie jądra atomowego w wyniku wychwytu neutronu (stad w bombie jądrowej niezbędne jest źródło neutronów, rozpoczynające reakcję) na dwa nietrwałe jądra potomne. Źródłem energii jest energia wiązań nukleonów (protonów i neutronów w jądrze). Im mniejsze jest jądro, tym większa jest energia wiązania nukleonów, zatem różnica energii włożonej w rozerwanie jądra uranu i uzyskanej przez utworzenie jąder potomnych ma znaczący wymiar. Przykładową reakcją rozpadu jest rozpad jądra uranu (236) na ksenon(140) i stront(93):
236U + n ----> 140Xe + 93Sr +3n

Energia wiązania na nukleon uranu wynosi 7.6 MeV, ksenonu - 8.4 MeV, strontu - 8.7 MeV. Zatem wyzwolona energia wyniesie:
140*8.4+93*8.7-236*7.6=191.5 MeV

Ilość ta może wydawać się niewielka, jednak należy pamiętać, że jest to energia wyzwolona przy rozpadzie zaledwie jednego jądra! Teoretycznie, przy założeniu 100% wydajności reakcji oraz doskonałego źródła neutronów o odpowiednich prędkościach (co oczywiście jest stanem wyidealizowanym) do osiągnięcia energii bomby nominalnej potrzeba niecałego 1kg uranu (!!!). W praktyce doprowadza się do łańcuchowej ("samonapędzającej") reakcji niekontrolowanej, co możliwe jest przy użyciu masy przekraczającej krytyczną [45 kg dla uranu(235) i 10 kg dla plutonu(239)]

Masa krytyczna


Pluton i uran rozszczepiane są po pochłonięciu dodatkowych neutronów, podobnie przy rozszczepieniu emitują neutrony. Kiedy w pewnej masie materiału rozszczepialnego reakcja rozszczepienia zaczyna zachodzić łańcuchowo (prawdopodobnie liczba neutronów emitowanych i pochłanianych jest wtedy zrównoważona), mówi się o tzw. masie krytycznej. Jest ona określona dla danych warunków (temperatura, ciśnienie, gęstość materiału) i zmiana tych warunków powoduje zmianę jej wartości. Przekroczenie tej masy - wartości progowej (tzw. masa nadkrytyczna) powoduje wybuchową reakcję łańcuchową. Zjawisko to, wykorzystane w bombie jądrowej jest niepożądane np. w reaktorach atomowych... Osiągnięcie masy krytycznej może nastąpić nie tylko przez fizyczne zgromadzenie takiej masy, ale i przez zwiększenie gęstości (zwiększenie gęstości obniża wartość masy krytycznej) np. przy podwyższonej temperaturze i/lub ciśnieniu lub sprowadzenie próbki materiału do kształtu kulistego.

W bombie jądrowej ważnym elementem jest osiągnięcie masy nadkrytycznej w określonym momencie. Zazwyczaj jest to realizowane przez rozdzielenie elementów materiału promieniotwórczego osłonami bądź utrzymywanie gęstości materiału rozszczepialnego (zazwyczaj w formie kuli) poniżej gęstości krytycznej. Wartość masy (gęstości) krytycznej można zmniejszyć nawet dwu-trzykrotnie tzw. reflektorami neutronów (tzn. materiałami odbijającymi neutrony, które zwiększają ilość i energię neutronów oddziałujących z materiałem promieniotwórczym), co oznacza, że do osiągnięcia reakcji łańcuchowej potrzebna jest mniejsza masa materiału. Odpalenie przed wybuchem zapalnika aktywującego materiał wybuchowy powoduje rozerwanie osłon i połączenie elementów materiału rozszczepialnego w całość o masie nadkrytycznej lub zmniejszenie objętości kuli materiału, co zwiększa jej gęstość ... następne pikosekundy to wysokoenergetyczny fenomen, zwany też niekontrolowaną reakcją łańcuchową...

Bomba wodorowa (dwufazowa)


Zależnie od rodzaju ładunku możliwe są dwa zjawiska:
· bezpośrednie oddziaływanie fali strumienia energii na okolicę;
· indukcja kolejnych procesów wysokoenergetycznych....

Bomby takie osiągają maksymalną energię kilkuset kiloton TNT.

W przypadku drugim korzysta się z faktu, ze niekontrolowana reakcja łańcuchowa powoduje powstanie warunków ekstremalnie wysokich temperatur (kilkadziesiąt milionów kelwinów) i ciśnień. Takie warunki stwarzają możliwość przebiegu procesu o jeszcze wyższej energii - tzn. syntezy (fuzji) lekkich jąder. Na tym właśnie polega działanie tzw. bomby o ładunku dwufazowym - faza pierwsza dostarcza energii do zainicjowania fazy drugiej.
W fazie drugiej zachodzą dwie podstawowe reakcje:
· -synteza deuteru i trytu w jądro helu
H(2) + H(3) -----> He(4) + n 17.4 MeV

· synteza deuteru i litu w dwa jądra helu
H(2) +Li(6) -----> He(4) + He(4) 24 MeV

W procesach tych przebieg reakcji uzależniony jest również od gęstości materiałów, stąd stosowanie gazowego wodoru (tzn. jego izotopów deuteru i trytu) jest ekonomicznie nieuzasadnione, zaś przeprowadzenie go w stan ciekły wymaga schłodzenia do temperatury kilkunastu kelwinów. W związku z tym stosuje się materiał stały, tzn. deuterek litu LiH. Materiał ten wypełnia wnętrze bomby, a ładunki pierwszego stopnia umieszczone są w jego wnętrzu. LiH jest źródłem zarówno deuteru jak i litu, tryt zaś uzyskiwany jest w procesie bombardowania neutronami, pochodzącymi z fazy pierwszej, atomów litu:
n + Li(6) -----> He(4) + H(3)

Proces ten dostarcza także dodatkowej energii do przebiegu syntez. Dodatkowo materiał do syntezy jest uzupełniony o ślady trytku litu, co ułatwia rozpoczęcie reakcji. Bomba o ładunku dwufazowym dostarcza energii rzędu kilku do kilkunastu megaton. Współczesne bomby, testowane w próbnych eksplozjach, osiągają energię ok.20 MtTNT. Bomba wodorowa bywa nazywana neutronową, ze względu na spore ilości tych cząstek wydzielanych w czasie syntez. Neutrony otrzymane w czasie fuzji lekkich jąder unoszą ok. 80% uzyskanej energii.

Energia uzyskana w wybuchu ładunku dwufazowego może bądź oddziaływać bezpośrednio bądź zostać wykorzystana do kolejnego procesu - jest to realizowane w bombie o tzw. ładunku trójfazowym.

Bomba fuzyjna (trójfazowa)


W przypadku ładunku trójfazowego ostatnim ogniwem otrzymywania energii jest rozszczepienie naturalnie występującego izotopu uranu(238), który do rozpadu wymaga wysokoenergetycznych, tzw. prędkich neutronów. Neutrony te wytwarzane są właśnie w reakcjach termojądrowych. Uran(238) stanowi obudowę komory reakcyjnej, w której przebiega wybuch ładunku dwufazowego. Ponieważ rozszczepienie tego materiału i uzyskanie energii następuje w wyniku pochłaniania prędkich neutronów, a nie reakcji łańcuchowej, nie jest konieczne zapewnienie masy krytycznej uranu. Wybuch ładunku trójfazowego dostarcza energii od kilku do kilkuset MtTNT. Teoretycznie, tzn. przy założeniu 100% wydajności reakcji, do wybuchu o energii 20Mt wystarcza zaledwie niecała tona uranu!

W praktyce wspomniane energie nigdy nie są osiągane ze względu na to, ze nie wszystkie jądra ulegają rozpadowi, a część uzyskanej energii jest tracona lub nieużyteczna (np. jako energia wewnętrzna powstałych w rozpadzie jąder). Faktyczna wydajność reakcji wynosi od 1 do kilkunastu procent. Stąd wymagane całkowite masy ładunku wynoszą:
· dla ładunku jednofazowego od kilkudziesięciu (masa krytyczna!) kilogramów do kilku ton;
· dla ładunku dwufazowego (całkowitego) kilka ton;
· dla ładunku trójfazowego (całkowitego) od kilku do kilkudziesięciu ton;

Historia powstania broni nuklearnej.

Broń jądrowa


2 sierpnia 1939, na krótko przed wybuchem II wojny światowej, Albert Einstein napisał list do ówczesnego prezydenta USA, Franklina D. Roosvelta, w którym wraz z kilku innymi naukowcami zawiadomił Roosvelta o podjętych w Hitlerowskich Niemczech pracach nad otrzymaniem wzbogaconego U-235, mogącego posłużyć do zbudowania bomby atomowej.

Wkrótce potem rząd Stanów Zjednoczonych podjął wielkie przedsięwzięcie, znane pod nazwą Projektu Manhattan. Celem Projektu Manhattan było przeprowadzenie koniecznych badań i wyprodukowanie nadającej się do praktycznego użycia bomby atomowej.

Najbardziej skomplikowanym zadaniem, z którym trzeba było się uporać, było wyprodukowanie wystarczającej ilości "wzbogaconego" uranu, zdolnego do podtrzymania reakcji łańcuchowej.

W Oak Ridge w stanie Tennessee zbudowano ogromne laboratorium-fabrykę wzbogacania uranu.

W przeciągu sześciu lat od 1939 do 1945 na Projekt Manhattan wydano ponad 2 miliardy dolarów. Metody wzbogacania uranu i konstrukcji bomby atomowej zostały zaprojektowane i pomyślnie wprowadzone do praktycznego zastosowania przez kilka najtęższych umysłów naszej epoki. Pośród tych, którzy rozpętali potęgę bomby atomowej był J. Robert Oppenheimer.

Był on głównym motorem Projektu Manhattan. Dbał o to, by wszystkie biorące w nim udział wielkie umysły pracowały na najwyższych obrotach. Nadzorował całe to przedsięwzięcie od początku do końca.

W końcu nadszedł dzień, w którym wszyscy w Los Alamos mogli sprawdzić, czy The Gadget (tak w trakcie prac nazywano bombę) będzie największym niewypałem stulecia, czy doprowadzi do zakończenia wojny. To rozstrzygające wydarzenie miało miejsce pewnego letniego poranka 1945.

O godzinie 5:29:45 (Mountain Time War) 16 lipca 1945 ponad zagłębieniem w górach Jemez w północnej części stanu Nowy Meksyk na nocnym niebie ukazał się biały rozbłysk. The Gadget (kodowa nazwa bomby) zapoczątkował Wiek Atomu. Światło eksplozji zmieniło barwę na pomarańczową, a atomowa ognista kula zaczęła unosić się w górę z szybkością 100 m/s, czerwieniejąc i pulsując w miarę jak stygła. Charakterystyczna chmura w kształcie grzyba z radioaktywnych par zaczęła się formować na wysokości 9 tys. m. Wszystko co pozostało w miejscu eksplozji na ziemi poniżej chmury było jakby zielonym, radioaktywnym szkłem. Spowodowało to wydzielenie ogromnych ilości energii cieplnej przez tę reakcję. Jaskrawe światło eksplozji przeszyło niebo przedświtu z takim natężeniem, że mieszkańcy oddalonych sąsiednich miejscowości mogliby przysiąc, że Słońce tego dnia wzeszło dwukrotnie. Pewna niewidoma dziewczynka zobaczyła błysk z odległości około 200 km. Pośród obserwujących eksplozję ludzi, którzy byli jej twórcami, reakcje były różne. Isidor Rabi odczuł to jako naruszenie równowagi wszechświata - jak gdyby ludzkość zagroziła światu, który zamieszkuje. Robert Oppenheimer, chociaż bardzo zadowolony z powodzenia projektu, zacytował zapamiętany fragment Bhagvad Gita, "Stałem się śmiercią", powiedział "niszczycielem światów". Ken Bainbridge rzekł: "teraz wszyscy jesteśmy sukinsynami". Kilku uczestników testu, wkrótce po zobaczeniu jego wyników, podpisało petycję przeciwko uwolnieniu potwora, którego sami stworzyli, ale nie doczekali się reakcji na nią. Jak się wkrótce okazało, na nieszczęście dla ludzkości, Jornada del Muerto w Nowym Meksyku nie było jedynym miejscem na naszej planecie, które doświadczyło skutków eksplozji jądrowej. Jak powszechnie wiadomo, bomba atomowa została użyta w wojnie tylko (aż?) dwukrotnie.

Głównym miejscem wybuchu atomowego była Hiroszima. 6 sierpnia 1945 roku na Hiroszimę została zrzucona ważąca ponad 4,5 tony bomba uranowa o nazwie "Little Boy". Punktem docelowym bomby był most na rzece Aioi, jeden z 81 mostów łączących brzegi jednego z siedmiu ramion delty rzeki Ota. Poziom zerowy został wyznaczony na wysokość 600 m. Bomba została zrzucona z bombowca B-29 Superfortress o nazwie Enola Gay. Minęła cel zaledwie o 240 m. O godzinie 08:16 w jednej chwili eksplozja jądrowa o sile dziesięciu KT zabiła 66000 ludzi, a 69000 zostało rannych. Obszar zupełnego odparowania w podmuchu mierzył 800 m średnicy. Poważnym zniszczeniom od podmuchu uległo wszystko na obszarze o średnicy 3,2 km, a w obrębie 4 km wszystko zostało spalone. Pozostały obszar rażenia, rozciągający się do średnicy ponad 5 km pokrywały znaczne zniszczenia.

9 sierpnia Nagasaki zostały potraktowane w taki sam sposób jak Hiroszima. Tym razem na miasto została zrzucona bomba plutonowa o nazwie "Fat Man". Pomimo, że "Fat Man" zboczył o ponad 2 km, to i tak zrównał z ziemią niemal pół miasta. Ludność Nagasaki zmniejszyła się w ułamku sekundy z 422000 do 383000. 39 tys. zostało zabitych, a ponad 25000 rannych.

Bomba wodorowa


Odkrycie istoty reakcji fuzji nastąpiło w początkach dwudziestego wieku i związane było ściśle z rozwojem fizyki atomowej. Początkowo wiedziano tylko, że procesy syntezy są źródłem energii Słońca, chociaż detale były dalej tajemnicą. Prace te podsumował Hans Bethe w swojej publikacji w Physical Reviewz w 1939 opisującej rolę reakcji fuzji dla Słońca, za co otrzymał w 1967 Nagrodę Nobla w dziedzinie fizyki.

Możliwość używania dla celów militarnych reakcji syntezy termojądrowej nie była brana serio dopóki nie poznano lepiej rozszczepienia. Prawie natychmiast fizycy z całego świata uświadomili sobie, że wytworzone w wyniku rozszczepienia wysokie temperatury mogą umożliwić syntezę, minęło jednak parę lat zanim przedstawiono konkretny pomysł. Dopiero Tokutaro Hagiwara z Uniwersytetu w Kyoto zaproponował tą idee w swoim przemówieniu z maja 1941 roku.

Kilka miesięcy później - w sierpniu 1941, gdy trwały już programy atomowe, Enrico Fermi zapytał Edwarda Tellera czy eksplozja atomowa mogła by zainicjować reakcję fuzji deuteru. Po przestudiowaniu dostępnego materiału Teller stwierdził, że jest to niemożliwe.

Prace badawcze związane z bronią termojądrową wielokrotnie wstrzymywane coraz bardziej zbliżały się do konstrukcji tego niezwykłego uzbrojenia. W czasie II Wojny Światowej interesowano się głównie procesami rozszczepienia, uznając, że fuzja to jeszcze daleka przyszłość. Ostatecznie program badania zjawisk termojądrowych włączono do Projektu Manhattan. Ponieważ pojawiały się liczne problemy, których nie można było rozstrzygnąć na papierze, a eksperymenty były nieosiągalne, program został silnie ograniczony. Teller był jednak tak zaangażowany w projekt, że okazał się niezdolny do wykonywania swoich obowiązków w Los Alamos, został więc przeniesiony do oddzielnej grupy.

Po zakończeniu wojny większość naukowców i techników z Los Alamos, jak i wszyscy szefowie rozpoczęli pracę w sektorze cywilnym. Teller był jednym z tych, którzy pozostali. W bardzo krótkim czasie rozwinął projekt przyszłej bomby wodorowej do realnych rozmiarów. Już w kwietniu 1946 na konferencji przedstawił wyniki badań swojego zespołu nad superbombą.

W ciągu następnych czterech lat blisko 50% pracowników Działu Teoretyki zajęło się projektem superbomby, chociaż ich ilość i umiejętności daleko odbiegały od stanu z czasów wojny. Brak dostatecznie dobrych maszyn liczących utrudniał dodatkowo cały program

Bomba fuzyjna


W styczniu 1951 Ulam złamał barierę budowy superbomby stosując ideę broni stopniowej (fazowej): chciał wykorzystać energię uwolnioną przez bombę atomową do kompresji zewnętrznego pojemnika z paliwem fuzyjnym. Idea ta powstała na skutek poszukiwań możliwości ulepszenia broni atomowej. W późniejszym czasie przekonał się, iż stosując tą metodę można rzeczywiście pokonać barierę dużych rozmiarów paliwa fuzyjnego. Otwarł tym samym nowy rozdział w historii broni nuklearnej: wielostopniowe bomby o nieograniczonych rozmiarach.

Pomysł to jednak nie wszystko. Trzeba jeszcze było stworzyć projekt odpowiedniego rozmieszczenia części składowych bomby, tak aby zmaksymalizować kompresję. Ulam chciał użyć uciekających neutronów i fali wybuchu rozszerzającego się rdzenia do otrzymania dostatecznej kompresji.

W marcu Teller dodał ważny element do schematu radiacji implozyjnej. Wykorzystując pomysł Ulama użycia do implozji reakcji rozszczepienia, Teller zasugerował aby umieścić materiał rozszczepialny w centrum paliwa fuzyjnego. Pomysłu tego nie trzeba jednak stosować, fala wybuchu i tak generuje w centrum bardzo wysokie temperatury wystarczające do zapoczątkowania reakcji fuzji.

Budowa

Mechanizmy bomby jądrowej


· Wysokościomierz
W zwykłym wysokościomierzu lotniczym stosuje się aneroid barometryczny, który mierzy zmiany od wysokości ciśnienia. Jednakże wpływ pogody na ciśnienie zwiększa błąd odczytu wysokości. Do wyznaczania poziomu zerowego bomby wygodniejszy w użyciu jest wysokościomierz radarowy lub radiowy.

· Detonator ciśnieniowy
Detonator czuły na ciśnienie powietrza może być mechanizmem bardzo skomplikowanym, ale do celów praktycznych stosuję się najczęściej prostszy rodzaj. Gdy ciśnienie powietrza osiągnie wymagany poziom, zainicjuje wybuch.

· Głowica detonacyjna
Głowica detonacyjna (lub głowice), umieszczona w konwencjonalnym materiale wybuchowym jest podobna do zwyczajnej spłonki. Służy po prostu jako katalizator głównego wybuchu. Bardzo ważna jest kalibracja tego urządzenia. Za mała głowica detonacyjna może stać się przyczyną kolosalnego niewypału, Głowica detonacyjna otrzyma impuls elektryczny z detonatora ciśnieniowego lub z wysokościomierza radarowego, zależnie od użytego typu.

· Konwencjonalne ładunki wybuchowe
Ładunek ten jest potrzebny do wstrzelenia (i zespolenia) wewnątrz obudowy bomby mniejszej części uranu z częścią większą. Do tego celu najlepiej nadaje się plastyczny materiał wybuchowy, można bowiem go dowolnie kształtować, zależnie od potrzeby do bomby uranowej lub plutonowej.

· Reflektor neutronów
Reflektor neutronów składa się z czystego U-238. Jest nie tylko nierozszczepialny, ale ma właściwość zawracania neutronów z powrotem. Wykonany z U-238 reflektor neutronów służy do dwóch celów. W bombie uranowej służy on jako dodatkowe zabezpieczenie przed powstaniem masy nadkrytycznej z dwóch oddzielnych części U-235. W bombie plutonowej reflektor zmniejsza straty neutronów w segmentach plutonu przez zawracanie ich w stronę centralnej części urządzenia.

· Uran i pluton
Wydzielenie U-235 jest bardzo trudne. Z każdych 25.000 ton wydobytej rudy uzyskuje się tylko 50 ton metalicznego uranu, z czego 99,3 % stanowi U-238, nie nadający się do eksplozji jądrowych. Co gorsza, do separacji tych dwóch izotopów nie nadaje się żadna chemiczna metoda ekstrakcji, ich właściwości chemiczne są bowiem identyczne. W praktyce do rozdzielenia ich nadają się jedynie metody mechaniczne. U-235 jest odrobinę lżejszy od U-238. Do ich wstępnej separacji jest stosowany system dyfuzji gazowej. Uran jest idealnym materiałem rozszczepialnym, nie jest jednak jedynym. W bombie atomowej można również użyć plutonu. Umieszczony przez dłuższy czas w reaktorze jądrowym U-238 pochłania neutrony i stopniowo przekształca się w pluton. Pluton jest rozszczepialny, choć nie tak łatwo ja U-235. Uran daje się zdetonować jak proste urządzenie z dwóch wstrzeliwanych do siebie części, ale pluton, ułożony w formie bardziej złożonej, 32-częściowej komory implozyjnej, trzeba detonować silniejszym konwencjonalnym materiałem wybuchowym, o większej szybkości reagowania. Zaś mechanizm detonujący ten materiał musi zapewniać równoczesność zapłonu wszystkich jego fragmentów. Oprócz tej detonacji potrzebna jest jeszcze czysta mieszanina polonu z berylem.

Krytyczna masa plutonu wynosi 16 kg. W przypadku otoczenia plutonu reflektorem z U-238 masa ta wynosi 10 kg.

Skutki zniszczeń


Moc współczesnej broni nuklearnej jest tak olbrzymia, że siła wybuchu ładunków jądrowych odpowiada zwykle tysiącom ton TNT (trotylu). Moc rażenia jednej bomby lub głowicy nuklearnej o mocy jednej kilotony ocenia się na równą sile wybuchu tysiąca ton trotylu, a głowica o mocy jednej megatony to ekwiwalent miliona ton trotylu.

Jednakże wybuch ładunku nuklearnego, poza podmuchem o ogromnej sile, wywołuje i inne skutki. W celu zwiększenia siły rażenia bombę detonuje się zwykle w powietrzu, kilka tysięcy metrów nad ziemią. W mgnieniu oka wytwarza się temperatura rzędu 10 milionów stopni, w efekcie czego powstaje ognista fala ciepła, która rozprzestrzenia się z prędkością światła, paląc wszystko na swojej drodze. Bezpośrednio za nią postępuje fala uderzeniowa wybuchu poruszająca się z prędkością ponad 300 metrów na sekundę i wytwarzająca wiatr osiągający 960 km/h. Po przejściu fali uderzeniowej powstaje z kolei podciśnienie, które wywołuje podmuch o prędkości 1000 km/h. Właśnie w tej fazie wybuchu formuje się charakterystyczny grzyb atomowy będący chmurą pyłu unoszącego się w słupie rozżarzonego gazu.

Potem następują śmiercionośne skutki promieniowania. W reakcjach, które zachodzą podczas eksplozji, wytwarza się fala promieni gamma, które przechodzą przez ciało ludzkie, niszcząc jego strukturę molekularną, szczególnie wiązania cząsteczkowe krwi. W wyniku wybuchu o mocy 20 kiloton, na przykład, powstaje promieniowanie o tak dużym natężeniu, że 25% spośród osób napromieniowanych znajdujących się promieniu 2 kilometrów od epicentrum umrze w ciągu miesiąca.

W 1963 mocarstwa atomowe USA, ZSRR i W. Brytania zawarły porozumienie zakazujące przeprowadzania wybuchów jądrowych w atmosferze ze względu na ich największą szkodliwość. W 1993 broń jądrową posiadały: Chińska Republika Ludowa, Francja, Wielka Brytania, USA, Rosja (jako prawno - międzynarodowy sukcesor ZSRR), czasowo Białoruś i Kazachstan, Ukraina a ponadto państwa, które osiągnęły próg nuklearny i są zdolne wyprodukować broń jądrową: Izrael, Indie, Korea Północna.

Broń nuklearna


Broń nuklearna, zwana też bronią masowego rażenia lub masowej zagłady, jest najbardziej destruktywną technologią, jaką kiedykolwiek rozwinięto. Od dnia, kiedy w 1938 roku odkryto istotę rozszczepienia, problem kontrolowania tej śmiercionośnej technologii był istotą w wyścigu zbrojeń. Świat, w którym dokonano tego odkrycia - wstrząśnięty wojną, otaczającą paranoją i okrucieństwami totalitaryzmu - przekształcił czysto teoretyczną możliwość w nieuchronną rzeczywistość. Naukowcy byli pewni, że tworzą tylko bardziej udoskonaloną broń, nie mieli pojęcia, że szybkimi krokami zbliżają się do otwarcia najstraszniejszego rozdziału w historii wojny.

Zrodzony w wojnie, projekt Manhattan był wysoko klasyfikowany od samego początku i jeszcze bardziej ukrywany. Nie zapobiegło to jednak w tworzeniu tych śmiercionośnych ładunków przez państwa, których zaawansowanie techniczne na to pozwalało. Przeszkody na drodze do "klubu nuklearnego" były skrzętnie usuwane - broń ta miała najwyższy priorytet.

Podczas zimnej wojny wiodące imperia poświęcały rozwój gospodarczy i ekonomiczny, aby tylko stworzyć jak najdoskonalszą broń. Chociaż motywację posiadania jej często określano jako niezbędną do obrony, prawdziwe cele były często mniej szlachetne. Względy polityczne, osobiste ambicje oraz czyste szaleństwo było wystarczającym powodem do trawienia olbrzymich funduszy publicznych, wystawiania milionów ludzi na zgubny wpływ efektów tej broni i obciążania następnych pokoleń brzemieniem przeszłości.

Wielka energia broni jądrowej pochodzi z rozszczepienia ciężkich lub syntezy lekkich pierwiastków. Rozszczepienie jądrowe zachodzi, gdy jądra pewnych izotopów bardzo ciężkich pierwiastków, na przykład uranu czy plutonu, pochłaniają neutrony. Jądra tych izotopów są mało stabilne i dodanie małej ilości energii kinetycznej pochodzącej z neutronu ( stąd w bombie jądrowej niezbędne jest źródło neutronów, rozpoczynające reakcję) spowoduje nagłe rozszczepienie na dwa jądra, czemu towarzyszy uwolnienie ogromnej ilości energii i kilku nowych neutronów. Jeżeli średnio jeden neutron z każdego rozszczepienia jest pochłaniany i powoduje reakcję rozszczepienia kolejnego jądra dochodzi do samo podtrzymywania, zwanego reakcją łańcuchową. Gdy natomiast średnio więcej niż jeden neutron z każdego rozpadu wywołuje rozszczepienie kolejnego jądra liczba neutronów i ilość wydzielonej energii rośnie wykładniczo do czasu. Reakcja fuzji, zwana często reakcją termojądrową, jest reakcją zachodzącą pomiędzy jądrami pewnych izotopów lekkich pierwiastków. Jeżeli do jąder tych dostarczy się dostatecznie dużo energii (np. na skutek wybuchu, lub dzięki akceleratorowi cząstek w laboratorium) istnieje wtedy znacząca szansa, że połączą się one tworząc jedno lub więcej nowych jąder, czemu towarzyszy wydzielenie się energii.

Broń jądrową dzielimy ze względu na rodzaj wykorzystywanej w niej reakcji jądrowej, na jedno -, dwu- i trójfazową. W broni jądrowej jednofazowej, nietrafnie zwanej również atomową, jedynym źródłem energii jest reakcja rozszczepienia jąder pierwiastków ciężkich, takich jak uran czy pluton. Broń jądrowa dwufazowa wykorzystuje energię powstałą w wyniku reakcji syntezy (fuzji) jąder pierwiastków lekkich. Powszechnie nazywa się ją również bronią termojądrową ze względu na olbrzymie temperatury, w jakich zachodzi reakcja syntezy, lub wodorową, ponieważ podstawowymi składnikami reakcji są izotopy wodoru – deuter i tryt. Pierwsza faza, rozszczepienie, dostarcza potrzebnej energii do zapoczątkowania drugiej fazy, czyli łączeniu się deuteru i trytu w wodór. Broń jądrowa trójfazowa, typu: rozszczepienie – synteza – rozszczepienie – wytwarza znaczną moc. Jest również nazywana bombą płaszczową lub przekładańcem, ze względu na swoją budowę. Jej działanie polega na rozszczepieniu neutronami, wytworzonymi w reakcji termojądrowej, plutonu, który powstaje dzięki energii z I i II fazy z nie rozszczepialnego, tworzącego płaszcz bomby, uranu.

Istnieje jeszcze typ broni jądrowej, który jest odmianą broni dwufazowej. Jest to broń neutronowa. Bomby należące do tej grupy nie absorbują neutronów powstających w czasie syntezy. Uwolnione w ten sposób intensywne promieniowanie wysokoenergetycznych neutronów stanowi jej główny mechanizm destrukcyjny. Promieniowanie neutronowe nie niszczy materii, lecz przez nią przenika, jednak zabija organizmy żywe.

Do broni jądrowej, należy również dodać tzw. bomby zasalające lub bomby kobaltowe. Ich działanie podobne jest do broni jądrowej trójfazowej, jednak zamiast rozszczepialnych pierwiastków z III fazy, stosuje się nierozszczepialne, specjalne dobrane izotopy radioaktywne, głównie kobalt (stąd nazwa bomb – kobaltowe). Warstwa pierwiastka, pochłania neutrony, powstające w fazie fuzyjnej, co powoduje przejście izotopu do stanu wysokiej radioaktywności. Użycie takiej bomby powoduje skażenie promieniotwórcze terenu. Zmienny efekt skażenia można uzyskać dzięki zastosowaniu odpowiednich izotopów. Złoto jest przeznaczane dla krótkoterminowego skażenia (trwającego dni), tantal i cynk dla skażenia pośredniego (trwającego miesiące), kobalt zaś stosuje się do skażania długoterminowego (lata).

Eksplozje jądrowe wytwarzają zarówno bezpośrednie jak i opóźnione w czasie skutki destrukcyjne. Efekty bezpośrednie (fala uderzeniowa, promieniowanie cieplne czy jonizujące) powodują poważne zniszczenia w ciągu sekund lub minut po wybuchu nuklearnym. Efekty opóźnione (opad radioaktywny oraz inne efekty środowiskowe) działają przez dłuższy okres - począwszy od godzin, aż do wieków - oraz mogą spowodować straty nawet na obszarach bardzo oddalonych od miejsca detonacji.

Istnieją trzy kategorie efektów bezpośrednich: fala uderzeniowa, radiacja cieplna (termiczna) oraz promieniowanie jonizujące. Ich relatywne znaczenie zmienia się w zależności od siły eksplozji bomby. Przy małych ładunkach wszystkie trzy mogą być znaczącym źródłem zniszczeń. Przy dość dużej sile te trzy efekty są sobie równe - są zdolne do dokonywania znaczących zniszczeń na odległość 1 km.
Poniższe równania pozwalają oszacować w zależności od ładunku promień zniszczeń dokonany przez każdy z tych efektów.

Część siły wybuchu bomby wyemitowanej jako promieniowanie cieplne, fala uderzeniowa czy promieniowanie jonizujące jest stała, niezależnie od mocy eksplozji, jednak zmienia się dramatycznie w zależności od otoczenia (różne formy energii odmiennie oddziałują z powietrzem oraz innymi obiektami).

Powietrze jest dobrym ośrodkiem dla radiacji termicznej, której niszczycielska moc związana jest z gwałtownym wzrostem temperatury. Powierzchnia kuli, której środek znajduje się w miejscu eksplozji, rośnie proporcjonalnie do kwadratu promienia. Destruktywny promień wzrasta zaś proporcjonalnie z kwadratem siły eksplozji. W rzeczywistości ów wskaźnik proporcjonalności jest trochę mniejszy, częściowo z powodu, iż duże bomby emitują ciepło wolniej, co redukuje destrukcję wywołaną przez każdą kalorię ciepła. Trzeba zaznaczyć, że obszar eksponowany na działanie radiacji termicznej wzrasta niemal liniowo z siłą wybuchu.

Fala uderzeniowa jest potężnym efektem wybuchów jądrowych. Energia fali uderzeniowej skupiona jest w ośrodku, przez który się przemieszcza (włączając w to powietrze). Gdy fala uderzeniowa przechodzi przez lity materiał, utracona energia powoduje zniszczenia. Gdy zaś przemieszcza się w powietrzu stopniowo traci swój impet. Im więcej materii, przez którą przechodzi energia, tym słabszy efekt. Wielkość obszaru, przez który przechodzi fala uderzeniowa, rośnie wraz ze wzrostem objętości kuli wycentrowanej w miejscu eksplozji. Z tego powodu moc fali uderzeniowej maleje wraz ze wzrostem promienia kuli.

Intensywność promieniowania jonizującego rządzi się tymi samymi zasadami, co radiacja cieplna. Jednak promieniowanie jonizujące jest także silnie absorbowane przez powietrze, co powoduje o wiele gwałtowniejszy spadek intensywności.

Zasadniczym opóźnionym efektem eksplozji jądrowych jest wyprodukowanie dużych ilości materiałów promieniotwórczych o dużym okresie półrozpadu (od dni do tysiącleci). Głównym źródłem tych produktów są resztki pozostałe po reakcji rozszczepienia. Znaczącym drugorzędnym źródłem jest absorpcja neutronów przez nie-radioaktywne izotopy zarówno z bomby jak i środowiska zewnętrznego

Izotopy o krótkim okresie półrozpadu uwalniają swoją energię gwałtownie, tworząc obszary o wysokim stopniu skażenia promieniotwórczego, które szybko ulegają neutralizacji. Izotopy o długim czasie półrozpadu uwalniają energię w czasie większych okresów czasu, tworząc tym samym obszary o mniejszym poziomie napromieniowania jednak będące bardziej trwałe. Z tego powodu produkty rozszczepienia mają początkowo bardzo wysoki stopień promieniotwórczości, który jednak gwałtownie maleje - wraz ze zmniejszeniem intensywności radiacji zmniejsza się również szybkość procesów rozpadu.

Wysoka temperatura nuklearnej kuli ognia połączona z gwałtowną ekspansją oraz ochładzaniem powoduje wytworzenie dużych ilości tlenków azotu z atmosferycznego tlenu i azotu (podobnie, jak dzieje się w silnikach spalinowych). Wznosząca się kula ognia silnego ładunku przeniesie tlenki azotu w głąb stratosfery, skąd będą mogły osiągnąć warstwę ozonową.

Znana propozycja grupy TTAPS (Turco, Toon, Ackerman, Pollack i Sagan) dotycząca potencjalnej "zimy jądrowej" jest kolejnym możliwym następstwem użycia broni nuklearnej. Efekt ten jest spowodowany przez absorpcję światła słonecznego przez duże ilości sadzy znajdujące się w atmosferze, a pochodzące z licznych pożarów miast i odwiertów naftowych zniszczonych podczas ataku nuklearnego. Późniejsze zaawansowane prace prowadzone przez naukowców na całym świecie potwierdziły je we wszystkich detalach. Wyniki te wskazywały, że ilość sadzy wytworzona podczas pożarów większości głównych miast Stanów Zjednoczonych i ZSRR zniszczy podstawy globalnego klimatu. Głównym efektem byłoby gwałtowny i drastyczny spadek temperatury, zwłaszcza na kontynentach. Ostatnie badania wykazały, że atak nuklearny na dużą skalę przeciwko celom miejskim i rafineriom spowodowałby średni spadek temperatury o przynajmniej 10 stopni C przez wiele miesięcy. Taki poziom ochłodzenia przekracza wielokrotnie to, co zostało zaobserwowane w poznanej historii i można go porównać do ery lodowcowej.

Podoba się? Tak Nie
Podobne teksty:
(0) Brak komentarzy

Treść zweryfikowana i sprawdzona

Czas czytania: 27 minut

Ciekawostki ze świata