profil

Powietrze jako mieszanina gazów

poleca 85% 781 głosów

Treść
Grafika
Filmy
Komentarze

Powietrze jest to mieszanina gazów z których składa się atmosfera ziemska. Ze względu na skład chemiczny i właściwości fizyczne wyróżniamy w niej składniki stałe i zmienne. Stałymi składnikami są azot (78%), tlen (20,95%), argon, neon, hel, metan, krypton, i wodór (razem ok.1%), natomiast zmienne składniki powietrza to: para wodna, dwutlenek węgla, dwutlenek siarki, dwutlenek azotu, ozon, składniki mineralne i organiczne (pył, sadza, bakterie). Gęstość powietrza w warunkach normalnych (0o, 760 Tr) wynosi 1,29 ∙ 10-3 g/cm3 . Temperatura topnienia -213oC, natomiast wrzenia -193oC.

Zanieczyszczeniami powietrza nazywamy wszelkie substancje (gazy, ciecze, ciała stałe), które znajdują się w powietrzu atmosferycznym, ale nie są jego naturalnymi składnikami. Do zanieczyszczeń powietrza zalicza się również substancje będące jego naturalnymi składnikami, ale występujące w znacznie zwiększonych ilościach

Możemy je sklasyfikować w różnoraki sposób.
Do najpowszechniej stosowanych należą podziały zanieczyszczeń ze względu na:
- rodzaj działalności będącej przyczyną emisji zanieczyszczeń, czyli zanieczyszczenia spowodowane działalnością samej przyrody( naturalne, biogenne, np. wybuchy wulkanów) bądź też związane z różnymi aspektami działalności człowieka ( sztuczne, antropogenne),
- rodzaj emitera - emitery punktowe, liniowe, powierzchniowe oraz objętościowe;
można również mówić o emiterach stacjonarnych oraz emiterach ruchomych, jak np. silniki pojazdów mechanicznych, statków, samolotów,
- typ emisji zanieczyszczeń - emisja zorganizowana bądź też emisja niezorganizowana,
- stan skupienia emitowanych zanieczyszczeń - pyły, aerozole oraz zanieczyszczenia gazowe,
- pochodzenia zanieczyszczeń jeśli chodzi o miejsce emisji ( zanieczyszczenia własne oraz zanieczyszczenia pochodzące z krajów sąsiednich),
- sposób w jaki dane zanieczyszczenie znalazło się w atmosferze - zanieczyszczenia pierwotne ( wyemitowane bezpośrednio do atmosfery z poszczególnych źródeł), zanieczyszczenia wtórne ( powstają w atmosferze na skutek reakcji między określonymi stałymi składnikami atmosfery; często omawiane są łącznie z tzw. efektami wtórnymi).

Zanieczyszczenia powietrza mogą dotrzeć wszędzie i nie dają się ograniczyć do określonego, wybranego obszaru, tak jak można często to uczynić w odniesieniu do zanieczyszczeń wód lub gleb. W powietrzu atmosferycznym zanieczyszczenia mogą się rozprzestrzeniać na wielkie odległości i skażać środowisko w zupełnie nieoczekiwanych miejscach. Najpoważniejszym źródłem emisji zanieczyszczeń pyłowych jest przemysł paliwowo-energetyczny, a w tym zwłaszcza przemysł elektroenergetyczny i ciepłowniczy, przy czym są to prawie wyłącznie popioły lotne. Istotny jest również udział metalurgii żelaza i stali, z czego ponad połowę stanowią pyły metalurgiczne. Emisje pyłów powoduje również przemysł chemiczny, głównie nieorganiczny, nawozów sztucznych i tworzyw sztucznych (przede wszystkim popiołów lotnych) oraz przemysł materiałów budowlanych, głównie przemysł cementowy. Najpoważniejszym źródłem emisji zanieczyszczeń gazowych jest przemysł paliwowo-energetyczny, a w tym głównie przemysł elektro-energetyczny i ciepłowniczy (ponad 3 gazów to dwutlenek siarki). Znaczący jest także udział emisji gazów przez zakłady metalurgiczne żelaza i stali (ponad 4/5 z tego to dwutlenek węgla, znany jako czad).




Poniższa tabela przedstawia wartości całkowitej emisji głównych zanieczyszczeń powietrza

Zanieczyszczenie Wartość emisji w tys. ton (1997)
Dwutlenek siarki (SO2) 2368
Dwutlenek azotu (NO2) 1154
Dwutlenek węgla (CO2) 373200
Niemetanowe lotne związki organiczne 1089
Amoniak (NH4) 364
Pyły 1250




Tlenki azotu
Związki należące do grupy podstawowych zanieczyszczeń powietrza atmosferycznego powstają w procesach przemysłowych, które przebiegają w wysokiej temperaturze:
- w procesie energetycznym spalania paliw,
- w procesie koksowania węgla (w trakcie spalania gazu w komorach grzewczych baterii
koksowniczych),
- w silnikach spalinowych pojazdów mechanicznych.

Tworzące się w procesie spalania związki azotu to tlenek azotu (NO) oraz dwutlenek azotu (NO 2). Tlenek azotu jest związkiem nietrwałym i w zależności od istniejących warunków albo ulega rozkładowi albo dąży do tworzenia trwałego związku jakim jest dwutlenek azotu. Czynnikiem sprzyjającym przechodzeniu NO w NO2 jest szybkie obniżenie temperatury spalin przy równoczesnej zawartości w nich wolnego tlenu.

Innym źródłem zanieczyszczenia powietrza związkami azotu jest rozpowszechnienie niektórych typów nawozów sztucznych. Z pól uprawnych nawożonych chemicznie, ale także i gnojowicą, unosi się w powietrze duża ilość amoniaku.

Dwutlenek siarki

Występuje w powietrzu w różnych postaciach. Największym zagrożeniem jest kwas siarkowy, który powstaje w wyniku rozpuszczenia suchego kwasu w wodzie. Powoduje to powstanie tzw. kwaśnych opadów atmosferycznych. Dla wielu obszarów Polski problem tzw. kwaśnych deszczy jest bardzo poważny, zwłaszcza dla świata roślinnego. Dla przykładu: stężenie rzędu 20 g/m3 jest szkodliwe dla lasów szpilkowych, a powyżej 50 g/m3 powoduje drugi stopień uszkodzenia lasów, gdy dopuszczalne u nas stężenie SO2 wynosi 100 g/m3.

Stężenie dwutlenku siarki osiąga różne wartości. Największe stężenie jest zimą ze względu na pogarszanie się warunków meteorologicznych (brak wiatrów, gęsta mgła itp.). Może być on przenoszony przez wiatr na znaczne odległości (nawet ponad 1000 km) w ciągu 2-4 dni. Jako związek chemicznie niestabilny przechodzi w procesach fotochemicznych do utlenionej postaci SO3. Jako bezwodnik kwasu reaguje z wodą przechodząc w kwas siarkowy. W rejonach przemysłowych stężenie SO2 w powietrzu zwykle nie przekracza
w pewnej odległości od emitera 105 mg/m3. Jednak stężenie SO2 w niektórych punktach wielu miast przekracza w krytycznych warunkach 2 i 3-krotnie dopuszczalną formę
0,35 mg/m3.

Tlenki węgla.
W procesie spalania niezupełnego wywiązuje się tlenek węgla. Powstaje on praktycznie we wszystkich procesach energetycznych spalania paliw. Szczególne zagrożenie stanowi jako składnik paliw pojazdów mechanicznych, które wytwarzają ok. 70-80% ogólnej emisji CO. W gazach odlotowych silników pojazdów samochodowych znajdują się: tlenek węgla, węglowodory, tlenek azotu, cząstki stałe( koksy, opiłki metali), a także związki ołowiu, które wprowadza się do benzyny dla podniesienia liczby oktanowej. Tlenek węgla jest gazem bezbarwnym i nie działa drażniąco na drogi oddechowe, co utrudnia wykrycie jego obecności w powietrzu.

Najwięcej z procesów spalania emituje się dwutlenku węgla, który nie stanowi bezpośredniej groźby pod warunkiem, że nie nastąpi naruszenie równowagi biologicznej.
W przyrodzie dwutlenek węgla spełnia oprócz roli naturalnej izolacji termicznej, również niezwykle ważną rolę jako materiał do budowy substancji organicznej w roślinach zawierających chlorofil. Jest on podstawowym źródłem węgla pobieranego przez rośliny z powietrza lub wody w procesach fotosyntezy. Systematyczne dokonywanie bilansu CO2 w powietrzu atmosferycznym jest podstawą do określania stanu zanieczyszczenia powietrza.

Dwutlenek węgla z uwagi na swoje właściwości izolacyjne ma ogromne znaczenie jako swoisty regulator średniorocznej temperatury. Gdyby istniejąca warstwa CO2 zniknęła z atmosfery, średnia roczna temperatura powietrza Ziemi spadła by do -70C, natomiast przy dwukrotnym wzroście warstwy CO2 przyrost temperatury wyniósłby 40C. Gaz ten, jako cięższy od powietrza, gromadzi się w pobliżu gruntu i działa tak, jak szyba w cieplarni, przez co zwiększa się zachmurzenie( przyśpiesza topnienie lodowców oraz odparowanie do hydrosfery i gleb), a to z kolei odcina Ziemię od znacznej części promieni słonecznych i zamknięciem cyklu staje się obniżenie temperatury. Powstaje w ten sposób tzw. piekielny cykl, którego działanie według prognoz może doprowadzić do nowej.


Wielopierścieniowe węglowodany aromatyczne (WWA)

Wielopierścieniowe węglowodany aromatyczne stanowią grupę związków, które wraz z rozwojem procesów przetwórczych i związanych z tym od lat niekontrolowanym zanieczyszczeniem środowiska, towarzyszy człowiekowi praktycznie wszędzie.
WWA to grupa związków chemicznych o charakterze wysoce lipofobowym.
Wiele związków z tej grupy występuje w dymie tytoniowym, powietrzu, wodzie, pożywieniu, glebie, osadach wodnych, wodnych organizmach, olejach mineralnych i rafinowanych produktach naftowych. Naturalnymi źródłami WWA są biosynteza, naturalne pożary i procesy degradacji materiału organicznego. Głównym jednak źródłem zanieczyszczeń środowiska naturalnego są produkty niepełnego spalania paliw kopalnych i ich przetwórstwo. Emisja WWA w spalinach może się zmieniać i zależy głównie od spalanego paliwa i warunków spalania. Dodatkowym źródłem są lotne pyły i popioły powstające ze spalania paliw lub utylizacji śmieci.
Wybitna szkodliwość WWA dla ludzi przejawia się w tym, że wiele z pośród nich po wchłonięciu drogą oddechową lub przez skórę ulega metabolizmowi tworząc pochodne o działaniu mutagennym i kancerogennym.


Związki siarki

Związek ten (H2S) emitowany głównie przez przemysł wiskozowy, koksownie, garbarnie i gazownie może być przyczyną porażenia układu nerwowego. Podobne działanie na organizm wykazuje dwusiarczek węgla (CS2), powstający przy produkcji tworzyw sztucznych oraz włókien wiskozowych. Znaczne stężenie CS2 może być przyczyną ślepoty albo nawet śmierci.

Fluorowodór

Silnie toksycznymi, zanieczyszczającymi powietrze atmosferyczne substancjami o właściwościach kumulacyjnych są związki fluoru, a głównie fluorowodór (HF). Emitowanie fluoru i jego związków związane jest z produkcją aluminium, nawozów sztucznych oraz z działalnością przemysłu szklarskiego i ceramicznego.

Ozon

Naturalnym źródłem ozonu (O3) jest po części proces przenikania z dolnej warstwy stratosfery, głównie zaś procesy fotochemiczne z udziałem tlenków azotu, węglowodorów i tlenku węgla zachodzące w przyziemnej warstwie granicznej. Zawartość O3 w powietrzu wzrasta w tempie 2% w ciągu roku. Jest głównym składnikiem smogu. Blisko powierzchni ziemi ozon jest trucizną, która współuczestniczy w tworzeniu smogu fotochemicznego i kwaśnego deszczu. Już 15-50 km. w górę od powierzchni ziemi ozon staje się pożyteczny, tworzy warstwę ochronną dla życia. Ozon jest bowiem jedynym gazem w atmosferze, który zatrzymuje nadmiar promieniowania ultrafioletowego - zawartą w promieniowaniu energię przetwarza na ciepło, dzięki czemu spełnia też funkcję atmosferycznego termoregulatora.

Aerozole i pyły

Bardzo często pod pojęciem „pył” rozumie się dwa różne materiały:
- pył atmosferyczny - zwany także aerozolem atmosferycznym,
- pył powierzchniowy (kurz) - materiał podlegający akumulacji na powierzchni dróg publicznych, w pomieszczeniach przeznaczonych na pobyt stały ludzi oraz na stanowiskach pracy.

Pyły powszechnie uznawane są za mało groźne zanieczyszczenie. W rzeczywistości jednak stanowią poważny czynnik chorobotwórczy. W zależności od stopnia ich rozdrobnienia oddziaływują na cały organizm ludzki - oczy, drogi oddechowe i płuca oraz skórę.


Istotne dla organizmu człowieka jest biologiczne zanieczyszczenie powietrza (bakterie chorobotwórcze, saprofity, wirusy i cząstki pleśni, glony, płytki kwiatów i nasion). Najbardziej niebezpieczne są układy w postaci pyłków bakteryjnych, powstające po wyschnięciu cząstek śluzu, śliny.

Kwaśne deszcze

Kwaśne deszcze to deszcze zawierające zaabsorbowane w kroplach wody dwutlenek siarki, tlenki azotu oraz ich produkty reakcji w atmosferze: rozcieńczone roztwory kwasów siarki, głównie kwasu siarkawego (IV) oraz najbardziej szkodliwego kwasu siarkowego (kwasu siarkowego (VI)) a także kwasu azotowego. Powstają nad obszarami, gdzie atmosfera jest zanieczyszczana długotrwałą emisją dwutlenku siarki i tlenków azotu (ze źródeł naturalnych, jak czynne wulkany, albo sztucznych, jak spaliny z dużych elektrowni i elektrociepłowni zasilanych zasiarczonym - tzn. zawierającym siarkę i jej związki - paliwem, zazwyczaj węglem kamiennym lub brunatnym). Czasami opady (kwaśnego deszczu, a także kwaśnego śniegu) trafiają na obszary bardzo odległe od źródeł zanieczyszczeń atmosfery, dlatego przeciwdziałanie kwaśnym deszczom stanowi problem międzynarodowy. Kwaśne deszcze działają niszcząco na florę i faunę, są przyczyną wielu chorób układu oddechowego, znacznie przyspieszają korozję konstrukcji metalowych (np. elementów budynków, samochodów) oraz zabytków (np. nie odporność wielu gatunków kamieni budowlanych na kwaśne deszcze). Zapobieganie polega na budowaniu instalacji wyłapujących tlenki siarki i azotu ze spalin emitowanych do atmosfery (odsiarczanie gazu) oraz rezygnacji z paliw o znacznym stopniu zasiarczenia.

Skutki działania "kwaśnych deszczy":
1.Zakwaszenie gleby .
W glebie zachodzi wiele naturalnych procesów zakwaszania , a jednym z najważniejszych jest pobieranie pokarmu przez rośliny . Większość pożywienia jest przyswajana w postaci jonów dodatnich , których ubytek jest kompensowany przez rośliny także przez oddawanie do gleby dodatnich jonów wodorowych - w przeciwnym wypadku , zarówno rośliny jak i gleba zostałyby naładowane elektrycznie . Wzrost roślin prowadzi zatem do okresowego zakwaszenia gleby , podczas gdy rozkład martwego materiału roślinnego działa w kierunku odwrotnym . Z powodu zakwaszenia zmniejsza się ilość dżdżownic i bakterii w glebie , a w związku z tym rozkład martwych części organicznych odbywa się , w coraz większej mierze , przy udziale grzybów . Powoduje to wolniejsze tempo rozkładu , a co za tym idzie wolniejsze uwalnianie substancji odżywczych . W związku z tym problem niedoboru substancji pokarmowych , na obszarach podlegających zakwaszeniu , zaznacza się coraz bardziej . Gleba traci powoli swą funkcję sanitarną i rolę ważnego ośrodka życia . Zakwaszenie gleby powoduje również utratę jej właściwości sorpcyjnych - naturalnego filtru pochłaniającego m.in. związki toksyczne , metale ciężkie . Następuje uwolnienie ich do roztworu glebowego . W środowisku kwaśnym wymywaniu ulegają trudno rozpuszczalne substancje mineralne , z rozpadem minerałów włącznie . Tak z nierozpuszczalnych związków aluminium powstają jony, toksyczne dla korzeni drzew , ryb w jeziorach i innych organizmów żywych . Uwolnione substancje toksyczne , przenikając do organizmów zwierząt i człowieka , powodują skażenie wszystkich ogniw łańcucha pokarmowego .
Gleba bogata w wapń posiada właściwości buforowe , czyli zdolności do samoczynnego niwelowania zakwaszenia . Wietrzenie minerałów bogatych w wapń to gwarant wysokiego pH gleby , mimo kwaśnych opadów . W glebach ubogich w wapń wartość pH , w wyniku kwaśnych opadów , silnie obniża się . Ze względu na większe właściwości buforowe gleby , jej zakwaszenie jest procesem wolniejszym od zakwaszenia jezior i innych wód . Jednakże obydwa problemy są ściśle ze sobą związane . Woda znajdująca się w jeziorach i ciekach wodnych pochodzi bowiem w 90 % z wód , które tam dostały się po przejściu przez warstwę gleby , a tylko w 10 % ze śniegu i deszczu , który bezpośrednio spadł na jezioro .

2.Zakwaszenie wód powierzchniowych .
Zakwaszenie wody samo w sobie nie jest jedynym powodem , dla którego chorują i giną rośliny oraz zwierzęta . W kwaśnym środowisku zwiększa się koncentracja niezwykle trujących dla wielu organizmów jonów aluminiowych . Wymieranie ryb w kwaśnych jeziorach jest łącznym skutkiem obniżonej wartości pH i zatrucia przez aluminium . Obydwa te czynniki są rezultatem zakwaszenia . W zakwaszonym jeziorze zwiększa się również zawartość innych metali , takich jak kadm , cynk i ołów . Są one wówczas w większym stopniu pochłaniane przez zwierzęta i rośliny . Zarówno aluminium jak i inne metale dostają się do jezior z otaczających je zakwaszonych pól i lasów . Nie wszystkie zmiany biologiczne w jeziorach kwaśnych zależą od zmian składu chemicznego wody . Zanikanie ryb powoduje, że pewne gatunki owadów , które zwykle są łatwą zdobyczą ryb , mogą teraz rozprzestrzeniać się . Do tej grupy owadów należą m.in. pewne wodne chrząszcze , larwy jętek i pluskwiaki . Fauna jeziora w coraz większym stopniu zostaje zdominowana przez owady . To samo dzieje się w jeziorach pozbawionych ryb z przyczyn innych niż zakwaszenie . Owady bynajmniej nie czują się lepiej w kwaśnej wodzie , ale są w
dogodniejszej sytuacji z powodu braku ryb . Zakwaszone jeziora nie są martwe , lecz warunki biologiczne są w nich poważnie zmienione .
Doraźnie dla zmniejszenia zakwaszenia jezior , np. w Szwecji, stosuje się wapnowanie .
Jony glinu i metali ciężkich wytrącają się wówczas z roztworu w postaci nierozpuszczalnego osadu ,
szkodliwego dla organizmów żyjących na dnie . Wapnowanie podnosi pH wody , w której zawartość trujących jonów metali maleje i życie rozwija się raz jeszcze . Dla utrzymania tego stanu wapnowanie
należy kontynuować tak długo , jak ma się do czynienia z kwaśnymi opadami ; w przeciwnym razie
zebrane na dnie pokłady trujących jonów , uwolnione lawinowo w wyniku zakwaszenia , zniszczą wszelkie życie w tym zbiorniku . Jest to więc metoda uciążliwa , kosztowna i nie znamy jej wpływu na ekosystem .

3.Niszczenie budowli i konstrukcji metalowych .
Jednak nie tylko zagrożone są organizmy żywe . Zanieczyszczenia powietrza oddziaływają też
szkodliwie na materiały budowlane , tworzywa sztuczne , witraże i metale . Szczególnie narażone są dawne budowle z piaskowca i wapienia , który rozkłada się i rozpada . Przykładem takim są średniowieczne zabytki Krakowa , katedra Lincolna w Anglii , świątynie na Akropolu w Atenach .
W ostatnich latach coraz częstsze jest występowanie zjawiska korozji , którą wzmaga zakwaszenie
środowiska . Nawet hartowane materiały nie mogą sprostać kwaśnym opadom ; wymagają częstszego malowania , a zanieczyszczenia oddziaływają niekorzystnie na pigmenty w farbach . Tory w rejonach uprzemysłowionych oraz stal ( nawet ocynkowana ) szybko korodują , wymagając częstszych remontów . Niszczeniu ulegają też obrazy , litografie i starodruki w galeriach sztuki i bibliotekach .
Zanieczyszczenia powietrza zwiększają także kwasowość wody pitnej . Powoduje to wzrost zawartości
ołowiu , miedzi , cynku , glinu , a nawet kadmu w wodzie dostarczanej do naszych mieszkań . Zakwaszone wody niszczą instalacje wodociągowe , wypłukując z niej różne substancje toksyczne .

Czy tekst był przydatny? Tak Nie
Opracowania powiązane z tekstem

Czas czytania: 15 minut