profil

Tranzystor bipolarny

Ostatnia aktualizacja: 2022-06-25
poleca 85% 159 głosów

Treść
Grafika
Filmy
Komentarze

TRANZYSTOR BIOPOLARNY


Tranzystor Biopolarny – jest to półprzewodnikowy element elektroniczny, mający zdolność wzmacniania sygnału. Zbudowany jest z trzech warstw półprzewodnika o różnym typie przewodnictwa. Charakteryzuje się tym, że niewielki prąd płynący pomiędzy dwiema jego elektrodami (nazywanymi bazą i emiterem) steruje większym prądem płynącym między innymi elektrodami (kolektorem i emiterem).Tranzystor bipolarny składa się z trzech warstw półprzewodnika o różnym typie przewodnictwa: p-n-p lub n-p-n.
Struktura NPN (patrz załącznik)
Struktura PNP (patrz załącznik)

ZASADA DZIAŁANIA


Napięcie przyłożone do złącza baza-emiter w kierunku przewodzenia powoduje przepływ prądu przez to złącze – nośniki z emitera (elektrony w tranzystorach npn lub dziury w tranzystorach pnp) przechodzą do obszaru bazy. Nośniki wprowadzone z emitera do obszaru bazy dyfundują w stronę mniejszej ich koncentracji - do kolektora. Dzięki niewielkiej grubości obszaru bazy trafiają do obszaru drugiego złącza, a tu na skutek pola elektrycznego w obszarze zubożonym są przyciągane do kolektora.

W rezultacie, po przyłożeniu do złącza emiterowego napięcia w kierunku przewodzenia, popłynie niewielki prąd między bazą a emiterem, umożliwiający przepływ dużego prądu między kolektorem a emiterem.

PODZIAŁ


Ze względu na materiał, z którego są wytworzone:
- Krzemowe
- Germanowe
- Z arsenku galu

Ze względu na konstrukcję i technologię wytwarzania:
- Tranzystor ze złączem wyciąganym
- Tranzystor stopowy
- Tranzystor MESA
- Tranzystory planarne
- Tranzystory epitaksjalne

Ze względu na charakterystyczne parametry
- Wielkiej częstotliwości
- Małej częstotliwości
- Dużej mocy
- Małej mocy

Ze względu na sposób włączenia tranzystora do układu można wyróżnić trzy podstawowe układy jego pracy
- wspólnego emitera
- wspólnej bazy
- wspólnego kolektora

UKŁADY PRACY


Układ wspólnego emitera
Wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy bazę a emiter tranzystora, natomiast sygnał po wzmocnieniu odbierany jest spomiędzy kolektora a emitera. Elektroda emiter jest więc niejako "wspólna" dla sygnałów wejściowego i wyjściowego – stąd nazwa układu.

Układ wspólnej bazy
Wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy bazę a emiter tranzystora, natomiast sygnał po wzmocnieniu odbierany jest spomiędzy bazy i kolektora.

Układ wspólnego kolektora
Wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy bazę a kolektor tranzystora, natomiast sygnał po wzmocnieniu odbierany jest spomiędzy kolektora a emitera. Wzmocnienie napięciowe tego układu jest bliskie jedności, wobec czego na wyjściu wzmacniacza otrzymuje się "powtórzone" napięcie z wejścia, stąd druga powszechnie używana nazwa takich wzmacniaczy – wtórnik emiterowy.

Zastosowanie


Tranzystory ze względu na swoje właściwości wzmacniające znajdują bardzo szerokie zastosowanie. Są wykorzystywane do budowy wzmacniaczy różnego rodzaju: różnicowych, operacyjnych, mocy, selektywnych, pasmowych. Jest kluczowym elementem w konstrukcji wielu układów elektronicznych, takich jak źródła prądowe, lustra prądowe, stabilizatory, przesuwniki napięcia, klucze elektroniczne, przerzutniki, generatory i wiele innych.

Ponieważ tranzystor może pełnić rolę klucza elektronicznego, z tranzystorów buduje się także bramki logiczne realizujące podstawowe funkcje boolowskie, co stało się motorem do bardzo dynamicznego rozwoju techniki cyfrowej w ostatnich kilkudziesięciu latach. Tranzystory są także podstawowym budulcem wielu rodzajów pamięci półprzewodnikowych (RAM, ROM itp.).

Dzięki rozwojowi technologii oraz ze względów ekonomicznych większość wymienionych wyżej układów tranzystorowych realizuje się w postaci układów scalonych. Co więcej, niektórych układów, jak np. mikroprocesorów liczących sobie miliony tranzystorów, nie sposób byłoby wykonać bez technologii scalania.

W roku 2001 holenderscy naukowcy z Uniwersytetu w Delft zbudowali tranzystor składający się z jednej nanorurki węglowej, jego rozmiar wynosi zaledwie jeden nanometr, a do zmiany swojego stanu (włączony / wyłączony) potrzebuje on tylko jednego elektronu. Naukowcy przewidują, że ich wynalazek pozwoli na konstruowanie układów miliony razy szybszych od obecnie stosowanych, przy czym ich wielkość pozwoli na dalszą miniaturyzację elektronicznych urządzeń

Cały referat z oznaczeniami w załączniku

Czy tekst był przydatny? Tak Nie
(0) Brak komentarzy

Treść zweryfikowana i sprawdzona

Czas czytania: 3 minuty