profil

satysfakcja 51 % 383 głosów

Równania

drukuj
Treść
Obrazy
Wideo
Opinie

W ZAŁĄCZNIKU DO PRACY MASZ TO SAMO CO TU!!!


Równaniem nazywamy równość dwóch wyrażeń, z których przynajmniej jedno jest wyrażeniem algebraicznym.
Literę występującą w równaniu nazywamy niewiadomą
Jeżeli jakaś liczba po podstawieniu w miejsce niewiadomej daje równość prawdziwą, to mówimy, że liczba ta spełnia to równanie lub, że jest pierwiastkiem tego równania.
Rozwiązać równanie tzn. znaleźć wszystkie jego pierwiastki, udowodnić, że ich nie ma lub, że jest ich nieskończenie wiele.
Wszystkie liczby spełniające dane równanie tworzą zbiór rozwiązań tego równania.
Jeżeli dwa równania mają ten sam zbiór rozwiązań to mówimy, że są one równoważne.

Aby ułatwić sobie rozwiązywanie równań korzystamy z następujących twierdzeń
1. Jeżeli do obu stron równania dodamy lub odejmiemy tą samą liczbę lub wyrażenie to otrzymamy wyrażenie równoważne danemu
2. Jeżeli obie strony równania pomnożymy lub podzielimy przez tą samą liczbę różną od zera to otrzymamy wyrażenie równoważne danemu

Stosują te reguły, rozwiązywane równanie zstępujemy innym – prostszym o takich samych pierwiastkach. A oto jak wygląda rozwiązanie równania 2x + 2 = 8 – x :

2x + 2 = 8 – x / + x
2 + 3x = 8 / - 2
3x = 6 / : 3
x = 2

Liczba 2 jest pierwiastkiem tego równania.

Zazwyczaj rozwiązanie kończymy sprawdzeniem. Podstawiając do obu stron wyjściowego równania liczbę, którą otrzymaliśmy w rozwiązaniu. W tym wypadku jest to liczba 2, czyli sprawdzenie będzie wyglądało tak :

L = 2x + 2 = 2 * 2 + 2 = 6
P = 8 – x = 8 – 2 = 6
L = P

Jeżeli w równaniu występują nawiasy, należy je usunąć wykonując przy tym odpowiednie działania a następnie zredukować wyrazy podobne.

3 * (2x – 1) + 2 = 4 (x + 2) – x /usuwamy nawiasy
6x – 3 + 2 = 4x + 8 – x /redukujemy wyrazy podobne
6x – 1 = 3x + 8

Tak przekształcone równanie możemy szybko rozwiązać stosując się do wcześniej już wymienionych reguł.

Możemy wyróżnić dwa rodzaje równań:
1. Tożsamościowe – posiadające nieskończenie wiele rozwiązań np.: x = x / każda liczba rzeczywista spełnia równanie

2. Sprzeczne – nie posiadające żadnego rozwiązania np.: x = x –2 / sprzeczność

Często w równaniach pojawiają się ułamki. Aby się ich pozbyć należy pomnożyć obie strony równania przez najniższą wspólną wielokrotność mianowników tych ułamków.
Np. kiedy w równaniu występują wyrażenia o mianownikach 2 i 3. Aby pozbyć się kresek ułamkowych, mnożymy obie strony równania przez 6 – Najmniejszą Wspólną Wielokrotność liczb 2 i 3 (NWW 2,3).


Załączniki:
Autor Adusiaa
Przydatna praca? Tak Nie
Wersja ściąga: równania.doc
Komentarze (30) Brak komentarzy zobacz wszystkie
10.1.2012 (17:12)

to jest w kit łatwe a chodze do 2 gimy

22.9.2011 (21:32)

no nie mogę jutro mam sprawdzian sprawdzajacy moj poziom z podstawówki i nic nie umiem ! :( :(

25.7.2011 (16:50)

żal mi matmy ten kto ją wymyślił jest poje..ny ja chyba nigdy w życiu nie skumam wyrażeń algebra...

9.6.2011 (16:58)

Pomóżcie ktoś! Dajcie jakieś przykłady ! PlisSsS...

9.6.2011 (16:56)

O matko! Trudne to jest! ;(

18.8.2011 (17:59)

O matko! Trudne to jest! ;(



Serwis stosuje pliki cookies w celu świadczenia usług. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w urządzeniu końcowym. Możesz dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w Serwis stosuje pliki cookies w celu świadczenia usług. Więcej szczegółów w polityce prywatności.