profil

Promieniowanie

poleca 85% 1408 głosów

Treść
Grafika
Filmy
Komentarze

Pomimo wielu negatywnych skutków, jakie wymieniliśmy w naszej pracy promieniowanie posiada także wiele pozytywnych zastosowań. Nie chcemy ich wszystkich dokładnie opisywać, gdyż jest to temat bardzo szeroki Dosyć obszernie opisaliśmy elektrownie jądrowe, które to dostarczają wielu krajom energii elektrycznej. Dzięki nim niekonieczna jest eksploatacja złóż węgla kamiennego czy ropy naftowej(jak wiadomo pokładów tych substancji przy obecnym wydobyciu nie wystarczy na zbyt długo). Elektrownie te powodują, przy odpowiednim ich użytkowaniu, znacznie mniejszą degradacje środowiska naturalnego.

Bardzo ważne miejsce w dzisiejszym świecie zajmuje zastosowanie promieniowania jonizującego w medycynie. Większość z nas poznała już jego je, chociażby podczas prześwietleń aparaturą rentgenowską(np. złamanej ręki). Zasada jej działania jest bardzo prosta i polega na tym, że wiązka promieni X przenikając przez badany narząd ulega osłabieniu, ponieważ część promieni zostaje pochłonięta przez tkankę. Narządy zbudowane z tkanek o różnej gęstości, w różnym stopniu pochłaniają wiązkę promieniowania. Niejednorodnie osłabiona wiązka promieni X trafia na kliszę fotograficzną i powoduje jej zaciemnienie proporcjonalnie do stopnia osłabienia. W ten sposób na kliszy fotograficznej uzyskujemy obraz badanego narządu. Jednym z ważniejszych osiągnięć techniki rentgenowskiej jest tomografia komputerowa. Sterowany komputerem proces wykonywania kolejnych zdjęć badanego narządu w różnych płaszczyznach i pod różnym kątem pozwala uzyskiwać warstwowy obraz, przedstawiający bardzo dokładne nawet niewielkie zmiany chorobowe. Innym ważnym zastosowaniem promieniowania w medycynie jest radioterapia. Stosuje się ją w przypadku nowotworów szczególnie czerniaka (nowotwór skóry).

Szczególnie popularną technologią stało się napromieniowanie żywności. Stosuje się ją by móc dłużej przechowywać żywność. Na podstawie badań okazało się, że żywność utrwalana radiacyjnie nie jest toksyczna ani też radioaktywna, jednak podobnie jak i inne procesy utrwalające radiacja powoduje pewne zmiany chemiczne w żywności. Ich rodzaj i zasięg zależą od chemicznego składu produktu, dawki promieniowania, temperatury oraz dostępu światła i tlenu podczas napromieniania. Pod wpływem promieniowania jonizującego tworzą się między innymi wolne rodniki i zmniejsza się o 20-60% zawartość witamin A, B1,C i E. Trzeba jednak pamiętać, że podobne zmiany zachodzą w żywności pod wpływem termicznej obróbki lub długotrwałego jej przechowywania.
Zakres dawek dla różnych zastosowań napromieniowania produktów rolno – spożywczych
Cel napromieniowania Dawka [kGy] Produkty
1. Hamowanie kiełkowania 0,05 – 0,15 Ziemniaki, cebula, czosnek
2. Zwalczanie szkodników i pasożytów (dezynsekcja) 0,15 – 0,50 Ziarno zbożowe, warzywa strączkowe, suszone owoce
3. Opóźnienie procesów fizjologicznych (np. dojrzewania 0,50 – 1,0 Świeże warzywa i owoce
4. Przedłużenie okresu przechowywania 1,0 – 3,0 Świeże ryby, truskawki, pieczarki, itd.
5. Inaktywacja mikroorganizmów patogennych i powodujących psucie się żywności 1,0 – 7,0 Świeże i mrożone produkty morskie, świeży lub mrożony drób, mięso, pasze dla drobiu, itd
6. Obniżenie zawartości mikroorganizmów (wyjaławianie) 2,0 – 10,0 Przyprawy i zioła, preparaty białkowe i enzymatyczne, żelatyna, kazeina, glukoza, plazma krwi, guma arabska
Poza tym utrwalana radiacyjnie żywność może być napromieniana w trwałym opakowaniu, co skutecznie zapobiega jej wtórnemu skażeniu. Zastosowanie odpowiednich opakowań pozwala napromieniać żywność w różnych warunkach, między innymi w atmosferze beztlenowej, w próżni i niskiej temperaturze. Dobierając odpowiednio warunki w jakich dokonuje się proces napromieniania można np. zmniejszyć straty witamin lub uniknąć niekorzystnych zmian smakowych w produktach o dużej zawartości tłuszczów. Do napromieniania żywności wykorzystuje się promieniowanie , przyspieszone elektrony, a niekiedy promieniowanie X. Stosując dawki promieniowania do 1 kGy można opóźnić dojrzewanie lub zahamować kiełkowanie w produktach pochodzenia roślinnego, zwalczać szkodniki oraz pasożyty. Napromienianie żywności dawkami do 10 kGy inaktywuje bakterie, pleśnie, drożdże i mikroflorę patogenną, co sprawia, że wydłuża się okres jej trwałości i zmniejsza liczba zatruć pokarmowych. Dawki w przedziale 10-50 kGy stosowane są do sterylizacji produktów żywnościowych.

Techniki radiacyjne stosowane są w różnych gałęziach przemysłu. Wykorzystuje się je do sterylizacji sprzętu medycznego, modyfikacji polimerów, materiałów półprzewodnikowych, do barwienia tkanin, szkła i sztucznych, a nawet naturalnych kamieni. Na świecie ilość produktów wytwarzanych lub modyfikowanych radiacyjnie sięga milionów ton rocznie i ciągle wzrasta.

Zasada stosowania technik radiacyjnych polega na napromieniowaniu materiałów i gotowych wyrobów za pomocą wiązki elektronów lub promieniowania gamma. Przykładem wykorzystania technik radiacyjnych są termokurczliwe rurki i taśmy, które doskonale sprawdzają się jako izolacja elektryczna. Znajdują one zastosowanie wszędzie tam, gdzie trzeba wykonać trwałe i szczelne połączenia elementów.

Techniki radiacyjne stosuje się w technologii oczyszczania gazów odlotowych z instalacji spalających m. in. węgiel. Napromieniowanie gazów wiązką elektronów powoduje zredukowanie emisji dwutlenku siarki o 95%, a tlenków azotu o 80%.

Oprócz tego promieniowanie stosuje się w tzw. aparaturze radiomerycznej, którą stanowią różnego rodzaju mierniki, czujniki, detektory i regulatory. W przemyśle metalurgicznym i chemicznym wykorzystuje się grubościomierze. Natomiast mierniki poziomu materiałów ciekłych i sypkich, gęstościomierze umożliwiające zdalną kontrolę i automatyczną regulację procesów technologicznych / np. bezkontaktowy pomiar stężenia kwasu siarkowego / znalazły zastosowanie również w wielu innych gałęziach przemysłu. Jedną z ważniejszych metod wykorzystujących promieniowanie jonizujące - a stosowanych w przemyśle - jest tzw. analiza aktywacyjna, czyli jądrowa analiza składu materiałów. Za pomocą tej metody można określić lub wykryć zanieczyszczenia, określić ilościową zawartość metali ciężkich w odpadach, azotu w ziarnach, nawozach sztucznych itd. Jej zaletą jest możliwość oznaczania jednocześnie wielu pierwiastków.
Zastosowanie izotopów promieniotwórczych
Pierwiastek Izotop Wykorzystywane
promieniowanie Czas półrozpadu (T1/2) Zastosowanie
Ameryk 241Am alfa 432,7 lat czujniki dymu
(instalacje przeciwpożarowe)
Cez 137Cs gamma 30 lat radiografia przemysłowa,
bomba cezowa, pomiary grubości
Iryd 192Ir gamma 73,8 lat radiografia przemysłowa
Jod 131I gamma 8 dni badanie tarczycy (medycyna)
Kobalt 60Co gamma 5,3 lat bomba kobaltowa (medycyna),
radiografia przemysłowa, urządzenia
radiacyjne, waga izotopowa, sprzęt
do pomiaru: grubości, poziomu
cieczy w zbiornikach.
Pluton 238Pu alfa 87,7 lat stymulatory serca,czujniki dymu
Pluton 239Pu alfa 24000 lat czujniki dymu
Rad 226Ra gamma 1600 lat aplikatory radowe
Tal 204Tl beta 3,8 lat sprzęt do pomiaru grubości
Wodór
(Tryt) 3H beta 12,3 lat farby świecące
Oprócz tego promieniotwórczość znajduje wiele innych zastosowań, których nie sposób wymienić w tak krótkim referacie.

Czy tekst był przydatny? Tak Nie

Czas czytania: 5 minut